Robyn Overall School of Life and Environmental Sciences, University of Sydney, Australia
1 protocol

William Armour School of Life and Environmental Sciences, University of Sydney, Australia
1 protocol

Deborah Anne Barton
  • School of Life and Environmental Sciences, University of Sydney, Australia
  • 1 Author merit


PH.D in Plant Cell Biology, School of Biological Sciences, The University of Sydney, 2005

Current Position

Lecturer, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia

Publications (since 2004)

  1. Ronai, I., Oldroyd, B. P., Barton, D. A., Cabanes, G., Lim, J. and Vergoz, V. (2016). Anarchy Is a Molecular Signature of Worker Sterility in the Honey Bee. Mol Biol Evol 33(1): 134-142.
  2. Liu, D. Y., Smith, P. M., Barton, D. A., Day, D. A. and Overall, R. L. (2015). Characterisation of Arabidopsis calnexin 1 and calnexin 2 in the endoplasmic reticulum and at plasmodesmata. Protoplasma.
  3. Brzoska, A. J., Jensen, S. O., Barton, D. A., Davies, D. S., Overall, R. L., Skurray, R. A. and Firth, N. (2016). Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein. PLoS One 11(6): e0156944.
  4. Vick, S., Tetu, S., Sherwood, N., Pinetown, K., Sestak, S., Vallotton, P., Elbourne, L., Greenfield, P., Johnson, E., Barton, D., Midgley, D. J. and Paulsen, L. P.  (2016). Revealing colonisation and biofilm formation of an adherent coal seam associated microbial community on a coal surface. Int J Coal Geol, 160-161, 42-50.
  5. Armour, W. J., Barton, D. A., Law, A. M. and Overall, R. L. (2015). Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells. Plant Cell 27(9): 2484-2500.
  6. Ronai, I., Barton, D. A., Oldroyd, B. P. and Vergoz, V. (2015). Regulation of oogenesis in honey bee workers via programed cell death. J Insect Physiol 81: 36-41.
  7. Barton, D., Overall, R. and Thompson, J. (2015). Structure and development of the lateral-line aerenchyma in bracken ferns (Pteridium: Dennstaedtiaceae). International Journal of Plant Sciences 176(7): 662-669.
  8. Barton, D. A., Cantrill, L. C., Law, A. M., Phillips, C. G., Sutton, B. G. and Overall, R. L. (2014). Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. Plant Cell Environ 37(12): 2781-2794.
  9. Jahn, K. A., Barton, D. A., Kobayashi, K., Ratinac, K. R., Overall, R. L. and Braet, F. (2012). Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43(5): 565-582.
  10. Fujita, M., Lechner, B., Barton, D. A., Overall, R. L. and Wasteneys, G. O. (2012). The missing link: do cortical microtubules define plasma membrane nanodomains that modulate cellulose biosynthesis? Protoplasma 249 Suppl 1: S59-67.
  11. Barton, D. A., Cole, L., Collings, D. A., Liu, D. Y., Smith, P. M., Day, D. A. and Overall, R. L. (2011). Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66(5): 806-817.
  12. Brecknock, S., Dibbayawan, T. P., Vesk, M., Vesk, P. A., Faulkner, C., Barton, D. A. and Overall, R. L. (2011). High resolution scanning electron microscopy of plasmodesmata. Planta 234(4): 749-758.
  13. White, R. G. and Barton, D. A. (2011). The cytoskeleton in plasmodesmata: a role in intercellular transport? J Exp Bot 62(15): 5249-5266.
  14. Barton, D. A. and Overall, R. L. (2010). Cryofixation rapidly preserves cytoskeletal arrays of leaf epidermal cells revealing microtubule co-alignments between neighbouring cells and adjacent actin and microtubule bundles in the cortex. J Microsc 237(1): 79-88.
  15. Andreeva, Z., Barton, D., Armour, W. J., Li, M. Y., Liao, L. F., McKellar, H. L., Pethybridge, K. A. and Marc, J. (2010). Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Planta 232(5): 1263-1279.
  16. Jahn, K. A., Barton, D. A., Su, Y., Riches, J., Kable, E. P., Soon, L. L. and Braet, F. (2009). Correlative fluorescence and transmission electron microscopy: an elegant tool to study the actin cytoskeleton of whole-mount (breast) cancer cells. J Microsc 235(3): 282-292.
  17. Barton, D., Braet, F., Marc, J., Overall, R. and Gardiner, J. (2009). ELP3 localises to mitochondria and actin-rich domains at edges of HeLa cells. Neurosci Lett 455(1): 60-64.
  18. Gardiner, J., Barton, D., Overall, R. and Marc, J. (2009). Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 15(1): 47-61.
  19. Barton, D. A., Gardiner, J. C. and Overall, R. L. (2009). Towards correlative imaging of plant cortical microtubule arrays: combining ultrastructure with real-time microtubule dynamics. J Microsc 235(3): 241-251.
  20. Barton, D. A., Vantard, M. and Overall, R. L. (2008). Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. Plant Cell 20(4): 982-994.
  21. Gardiner, J., Barton, D., Vanslambrouck, J. M., Braet, F., Hall, D., Marc, J. and Overall, R. (2008). Defects in tongue papillae and taste sensation indicate a problem with neurotrophic support in various neurological diseases. Neuroscientist 14(3): 240-250.
  22. Gardiner, J., Andreeva, Z., Barton, D., Ritchie, A., Overall, R. and Marc, J. (2008). The phospholipase A inhibitor, aristolochic acid, disrupts cortical microtubule arrays and root growth in Arabidopsis. Plant Biol (Stuttg) 10(6): 725-731.
  23. Gardiner, J., Barton, D., Marc, J. and Overall, R. (2007). Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8(9): 1145-1149.
  24. Barton, D., Overall, R. (2006). Structure and Organisation of Interphase Microtubule Arrays: FESEM Provides a MAP. Microscopy and Microanalysis, 12(Supp 2), 426-427.
  25. Lang, I., Barton, D. A. and Overall, R. L. (2004). Membrane-wall attachments in plasmolysed plant cells. Protoplasma 224(3-4): 231-243.
1 Protocol published
Visualising Differential Growth of Arabidopsis Epidermal Pavement Cells Using Thin Plate Spline Analysis
Authors:  William Jonathan Armour, Deborah Anne Barton and Robyn Lynette Overall, date: 11/20/2016, view: 2381, Q&A: 0
Epidermal pavement cells in Arabidopsis leaves and cotyledons develop from relatively simple shapes to form complex cells that have multiple undulations of varying sizes. Analyzing the growth of individual parts of the cell wall boundaries ...