Marisa Otegui Department of Botany and Genetics, Laboratory of Cell and Molecular Biology, University of Wisconsin, USA
1 protocol

Tomoko Dainobu Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
1 protocol

Satoshi Naramoto
  • Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
  • 1 Author merit


Ph.D. in Biological Sciences, The University of Tokyo, 2006

Current position

Assistant professor, Division of Molecular Biosystems, Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University (Prof. Junko Kyozuka lab) (09/2015)


Original Paper

  1. Naramoto, S.*, Otegui, M. S., Kutsuna, N., de Rycke, R., Dainobu, T., Karampelias, M., Fujimoto, M., Feraru, E., Miki, D., Fukuda, H., Nakano, A. and Friml, J.* (2014). Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26(7): 3062-3076.(*Corresponding author)
  2. Naramoto, S.*, Nodzylski, T., Dainobu, T., Takatsuka, H., Okada, T., Friml, J. and Fukuda, H. (2014). VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. Plant Cell Physiol 55(4): 750-763. (*Corresponding author)
  3. Aihara, K., Naramoto, S., Hara, M. and Mizoguchi, T. (2014). Increase in vascular pattern complexity caused by mutations in LHY and CCA1 in Arabidopsis thaliana under continuous light. Plant Biotechnology 31(1): 43-47.
  4. Inoue, T., Kondo, Y., Naramoto, S., Nakano, A. and Ueda, T. (2013). RAB5 activation is required for multiple steps in Arabidopsis thaliana root development. Plant Cell Physiol 54(10): 1648-1659.
  5. Chen, X., Naramoto, S., Robert, S., Tejos, R., Lofke, C., Lin, D., Yang, Z. and Friml, J. (2012). ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots. Curr Biol 22(14): 1326-1332.
  6. Kleine‐Vehn, J., Wabnik, K., Martiniere, A., Łangowski, Ł., Willig, K., Naramoto, S., Leitner, J., Tanaka, H., Jakobs, S. and Robert, S. (2011). Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Molecular systems biology 7(1): 540.
  7. Berckmans, B., Vassileva, V., Schmid, S. P., Maes, S., Parizot, B., Naramoto, S., Magyar, Z., Alvim Kamei, C. L., Koncz, C., Bogre, L., Persiau, G., De Jaeger, G., Friml, J., Simon, R., Beeckman, T. and De Veylder, L. (2011). Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23(10): 3671-3683. (Epub ahead of print)
  8. Mravec, J., Petrasek, J., Li, N., Boeren, S., Karlova, R., Kitakura, S., Parezova, M., Naramoto, S., Nodzynski, T., Dhonukshe, P., Bednarek, S. Y., Zazimalova, E., de Vries, S. and Friml, J. (2011). Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol 21(12): 1055-1060.
  9. Robinson, D. G., Scheuring, D., Naramoto, S. and Friml, J. (2011). ARF1 localizes to the golgi and the trans-golgi network. Plant Cell 23(3): 846-849; author reply 849-850.
  10. Wabnik, K., Kleine-Vehn, J., Balla, J., Sauer, M., Naramoto, S., Reinohl, V., Merks, R. M., Govaerts, W. and Friml, J. (2010). Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6: 447.
  11. Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., Van Montagu, M. C., Fukuda, H. and Friml, J. (2010). ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U S A 107(50): 21890-21895.
  12. Langowski, L., Ruzicka, K., Naramoto, S., Kleine-Vehn, J. and Friml, J. (2010). Trafficking to the outer polar domain defines the root-soil interface. Curr Biol 20(10): 904-908.
  13. Kleine-Vehn, J., Huang, F., Naramoto, S., Zhang, J., Michniewicz, M., Offringa, R. and Friml, J. (2009). PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell 21(12): 3839-3849.
  14. Naramoto, S.*, Sawa, S., Koizumi, K., Uemura, T., Ueda, T., Friml, J., Nakano, A. and Fukuda, H.* (2009). Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136(9): 1529-1538. (*Corresponding author)
  15. Sawa, S., Koizumi, K., Naramoto, S., Demura, T., Ueda, T., Nakano, A. and Fukuda, H. (2005). DRP1A is responsible for vascular continuity synergistically working with VAN3 in Arabidopsis. Plant Physiol 138(2): 819-826.
  16. Koizumi, K.#, Naramoto, S.#, Sawa, S.#, Yahara, N., Ueda, T., Nakano, A., Sugiyama, M. and Fukuda, H. (2005). VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132(7): 1699-1711.(#These authors contributed equally)

Review article

  1. Naramoto, S.*, Dainobu, T. and Otegui, M. S*. (2015). A bioimaging pipeline to show membrane trafficking regulators localized to the Golgi apparatus and other organelles in plant cells. Bio-protocol 5(17): e1583. (*Corresponding author)
  2. Krecek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J. and Zazimalova, E. (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10(12): 249.
  3. Naramoto, S. (2008). [Elaborate vesicle transport system behind the formation of plant cell polarity: focusing on the auxin mediated plant development]. Tanpakushitsu Kakusan Koso 53(16 Suppl): 2320-2325.
  4. Naramoto, S. (2006). Gene expression at a cellular level and observation method of protein (2-2). Whole mount fluorescent antibody technique. Cell Technology 14; 106-110.
1 Protocol published
A Bioimaging Pipeline to Show Membrane Trafficking Regulators Localized to the Golgi Apparatus and Other Organelles in Plant Cells
Authors:  Satoshi Naramoto, Tomoko Dainobu and Marisa S. Otegui, date: 09/05/2015, view: 5674, Q&A: 0
The plant Golgi apparatus is composed of numerous stacks of cisterna, designated as cis, medial, and trans Golgi cisternae; these stacks move within the cytoplasm along the actin cytoskeleton. Cis cisternae ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.