Antoine Danon Sorbonne Universités
4 protocols

Rainer Melzer University College Dublin
13 protocols

Kenichi Shibuya
  • Institute of Vegetable and Floriculture Science, NARO
Research focus
  • Plant science
  • 1 Author merit


Ph.D. in Agriculture, Tohoku University, 2001

Current position

Senior Researcher, NARO Institute of Floricultural Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan


  1. Shibuya, K., Shimizu, K., Niki, T. and Ichimura, K. (2014). Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. Plant J 79(6): 1044-1051.
  2. Shibuya, K., Niki, T. and Ichimura, K. (2013). Pollination induces autophagy in petunia petals via ethylene. J Exp Bot 64(4): 1111-1120.
  3. Mochizuki-Kawai, H., Shibuya, K. and Ichimura, K. (2013). Programmed cell death begins earlier in the mesophyll cells of tulip petals than in the epidermal cells. Postharvest Biol Tec 79: 9-12.
  4. Shibuya, K., Shimizu, K. and Yamada, T. (2011). Expression of autophagy-associated ATG8 genes during petal senescence in Japanese morning glory. J Jpn Soc Hortic Sci 80(1): 89-95.
  5. Shibuya, K. and Ichimura, K. (2010). Depression of autocatalytic ethylene production by high-temperature treatment in carnation flowers. J Jpn Soc Hortic Sci 79(1): 97-102.
  6. Shibuya, K., Yamada, T., Suzuki, T., Shimizu, K. and Ichimura, K. (2009). InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. Plant Physiol 149(2): 816-824.
  7. Shibuya, K., Fukushima, S. and Takatsuji, H. (2009). RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci U S A 106(5): 1660-1665.
  8. Verdonk, J. C.*, Shibuya, K.*, Loucas, H. M., Colquhoun, T. A., Underwood, B. A. and Clark, D. G. (2008). Flower-specific expression of the Agrobacterium tumefaciens isopentenyltransferase gene results in radial expansion of floral organs in Petunia hybrida. Plant Biotechnol J 6(7): 694-701. (*Equal contribution)
  9. Dexter, R. J., Verdonk, J. C., Underwood, B. A., Shibuya, K., Schmelz, E. A. and Clark, D. G. (2008). Tissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene. J Exp Bot 59(3): 609-618.
  10. Kapoor, M., Baba, A., Kubo, K., Shibuya, K., Matsui, K., Tanaka, Y. and Takatsuji, H. (2005). Transgene-triggered, epigenetically regulated ectopic expression of a flower homeotic gene pMADS3 in Petunia. Plant J 43(5): 649-661.
  11. Underwood, B. A., Tieman, D. M., Shibuya, K., Dexter, R. J., Loucas, H. M., Simkin, A. J., Sims, C. A., Schmelz, E. A., Klee, H. J. and Clark, D. G. (2005). Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 138(1): 255-266.
  12. Simkin, A. J., Underwood, B. A., Auldridge, M., Loucas, H. M., Shibuya, K., Schmelz, E., Clark, D. G. and Klee, H. J. (2004). Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136(3): 3504-3514.
  13. Shibuya, K., Barry, K. G., Ciardi, J. A., Loucas, H. M., Underwood, B. A., Nourizadeh, S., Ecker, J. R., Klee, H. J. and Clark, D. G. (2004). The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136(2): 2900-2912.
  14. Negre, F., Kish, C. M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D. G. and Dudareva, N. (2003). Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15(12): 2992-3006.
  15. Sugawara, H., Shibuya, K., Yoshioka, T., Hashiba, T. and Satoh, S. (2002). Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? J Exp Bot 53(368): 407-413.
  16. Shibuya, K., Nagata, M., Tanikawa, N., Yoshioka, T., Hashiba, T. and Satoh, S. (2002). Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53(368): 399-406.
  17. Waki, K., Shibuya, K., Yoshioka, T., Hashiba, T. and Satoh, S. (2001). Cloning of a cDNA encoding EIN3-like protein (DC-EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. J Exp Bot 52(355): 377-379.
  18. Shibuya, K., Yoshioka, T., Hashiba, T. and Satoh, S. (2000). Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J Exp Bot 51(353): 2067-2073.
  19. Kosugi, Y., Shibuya, K., Tsuruno, N., Iwazaki, Y., Mochizuki, A., Yoshioka, T., Hashiba, T. and Satoh, S. (2000). Expression of genes responsible for ethylene production and wilting are differently regulated in carnation (Dianthus caryophyllus L.) petals. Plant Sci 158(1-2): 139-145.


  1. Klionsky, D. and 1269 others (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445-544.
  2. Shibuya, K. (2012). Molecular mechanisms of petal senescence in ornamental plants. Journal of the Japanese Society for Horticultural Sci 81(2): 140-149.
  3. Shibuya, K., Yamada, T. and Ichimura, K. (2009). Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory. Autophagy 5(4): 546-547.
  4. Shibuya, K. and Clark, D. G. (2006). Ethylene: current status and future directions of using transgenic techniques to improve flower longevity of ornamental crops. J Crop Improv 18(1-2): 391-412.
1 Protocol published
Author:  Kenichi Shibuya, date: 05/20/2015, view: 9289, Q&A: 0
Japanese morning glory (Ipomoea nil) is a summer annual vine that typically produces ephemeral flowers. This plant has been used extensively to investigate flowers, including studies on flowering, flower color, and petal senescence. Here we ...
1 Protocol reviewed
In vitro Floral Induction of Cuscuta reflexa
Authors:  Priyanka Das and Santilata Sahoo, date: 01/20/2017, view: 6308, Q&A: 0
Floral initiation and development in the angiosperms is the essential step on which the yield of the plant depends. Sometimes external climate or any abiotic stress hinders the floral initiation and ultimately affect the plant yield. Hence, in vitro ...
More >
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.