Maureen Wirschell University of Mississippi Medical Center
1 protocol

Mary E. Porter
  • Department of Genetics, Cell Biology, and Development, University of Minnesota, USA
  • 1 Author merit


Ph.D. in Biology, University of Pennsylvania, Philadelphia, PA, 1982

Current position

Professor, Dept of Genetics, Cell Biology & Development, UMN, Minneapolis, MN


  1. Wirschell, M., Olbrich, H., Werner, C., Tritschler, D., Bower, R., Sale, W. S., Loges, N. T., Pennekamp, P., Lindberg, S., Stenram, U., Carlen, B., Horak, E., Kohler, G., Nurnberg, P., Nurnberg, G., Porter, M. E. and Omran, H. (2013). The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 45(3): 262-268.
  2. Bower, R., Tritschler, D., Vanderwaal, K., Perrone, C. A., Mueller, J., Fox, L., Sale, W. S. and Porter, M. E. (2013). The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 24(8): 1134-1152.
  3. O'Toole, E. T., Giddings, T. H., Jr., Porter, M. E. and Ostrowski, L. E. (2012). Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 69(8): 577-590.
  4. Heuser, T., Barber, C. F., Lin, J., Krell, J., Rebesco, M., Porter, M. E. and Nicastro, D. (2012). Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 109(30): E2067-2076.
  5. Toba, S., Fox, L. A., Sakakibara, H., Porter, M. E., Oiwa, K. and Sale, W. S. (2011). Distinct roles of 1alpha and 1beta heavy chains of the inner arm dynein I1 of Chlamydomonas flagella. Mol Biol Cell 22(3): 342-353.
  6. VanderWaal, K. E., Yamamoto, R., Wakabayashi, K., Fox, L., Kamiya, R., Dutcher, S. K., Bayly, P. V., Sale, W. S. and Porter, M. E. (2011). bop5 Mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms. Mol Biol Cell 22(16): 2862-2874.
  7. Lin, J., Tritschler, D., Song, K., Barber, C. F., Cobb, J. S., Porter, M. E. and Nicastro, D. (2011). Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J Biol Chem 286(33): 29175-29191.
  8. Nicastro, D., Fu, X., Heuser, T., Tso, A., Porter, M. E. and Linck, R. W. (2011). Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci U S A 108(42): E845-853.
  9. Hom, E. F., Witman, G. B., Harris, E. H., Dutcher, S. K., Kamiya, R., Mitchell, D. R., Pazour, G. J., Porter, M. E., Sale, W. S., Wirschell, M., Yagi, T. and King, S. M. (2011). A unified taxonomy for ciliary dyneins. Cytoskeleton (Hoboken) 68(10): 555-565.
  10. Wirschell, M., Yang, C., Yang, P., Fox, L., Yanagisawa, H. A., Kamiya, R., Witman, G. B., Porter, M. E. and Sale, W. S. (2009). IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding. Mol Biol Cell 20(13): 3044-3054.
  11. Bower, R., VanderWaal, K., O'Toole, E., Fox, L., Perrone, C., Mueller, J., Wirschell, M., Kamiya, R., Sale, W. S. and Porter, M. E. (2009). IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility. Mol Biol Cell 20(13): 3055-3063.
  12. Heuser, T., Raytchev, M., Krell, J., Porter, M. E. and Nicastro, D. (2009). The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187(6): 921-933.
  13. Nicastro, D., Schwartz, C., Pierson, J., Gaudette, R., Porter, M. E. and McIntosh, J. R. (2006). The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313(5789): 944-948.
  14. Mueller, J., Perrone, C. A., Bower, R., Cole, D. G. and Porter, M. E. (2005). The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 16(3): 1341-1354.
  15. Hendrickson, T. W., Perrone, C. A., Griffin, P., Wuichet, K., Mueller, J., Yang, P., Porter, M. E. and Sale, W. S. (2004). IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending. Mol Biol Cell 15(12): 5431-5442.
  16. Perrone, C. A., Tritschler, D., Taulman, P., Bower, R., Yoder, B. K. and Porter, M. E. (2003). A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and Mammalian cells. Mol Biol Cell 14(5): 2041-2056.
  17. Rupp, G. and Porter, M. E. (2003). A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 162(1): 47-57.
  18. Rupp, G., O'Toole, E. and Porter, M. E. (2001). The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol Biol Cell 12(3): 739-751.
  19. Perrone, C. A., Myster, S. H., Bower, R., O'Toole, E. T. and Porter, M. E. (2000). Insights into the structural organization of the I1 inner arm dynein from a domain analysis of the 1beta dynein heavy chain. Mol Biol Cell 11(7): 2297-2313.
  20. Myster, S. H., Knott, J. A., Wysocki, K. M., O'Toole, E. and Porter, M. E. (1999). Domains in the 1alpha dynein heavy chain required for inner arm assembly and flagellar motility in Chlamydomonas. J Cell Biol 146(4): 801-818.
  21. Porter, M. E., Bower, R., Knott, J. A., Byrd, P. and Dentler, W. (1999). Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10(3): 693-712.
  22. Perrone, C. A., Yang, P., O'Toole, E., Sale, W. S. and Porter, M. E. (1998). The Chlamydomonas IDA7 locus encodes a 140-kDa dynein intermediate chain required to assemble the I1 inner arm complex. Mol Biol Cell 9(12): 3351-3365.
  23. Myster, S. H., Knott, J. A., O'Toole, E. and Porter, M. E. (1997). The Chlamydomonas Dhc1 gene encodes a dynein heavy chain subunit required for assembly of the I1 inner arm complex. Mol Biol Cell 8(4): 607-620.
1 Protocol published
Generation of Polyclonal Specific Antibodies
Authors:  Maureen Wirschell and Mary E. Porter, date: 06/05/2013, view: 6461, Q&A: 0
Generation of antibodies specific for a protein of interest is a common method in many disciplines. This protocol details the steps in production of a polyclonal antibody in rabbits using a bacterially expressed fusion protein as an antigen. The ...
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.