Tim Friesen Department of Plant Pathology, North Dakota State University, USA
1 protocol
Agnieszka Zienkiewicz Georg August University
13 protocols

Andreea Daraba Biological Research Center of The Hungarian Academy of Sciences
2 protocols

Anna Kozhevnikova Russian Academy of Sciences
2 protocols

Arsalan Daudi University of California
157 protocols

Zhaohui Liu
  • North Dakota State University
Research focus
  • Plant science
  • 1 Author merit


Ph.D. in Plant Pathology, North Dakota State University, Fargo, ND, USA, 2006

Current position

Assistant Professor, Department of Plant Pathology, North Dakota State University, Fargo, ND (2012-present)


Refereed publications

  1. Bolton, M., Inderbitzinde, P., de Jonge R, Liu, Z.H., Birla, K, Secor, G., and Thomma, B.P.H.J. (2014). Evidence for retrotransposition of a fused mating type gene in Cercospora species implicates an ancestral homothallic lineage in the Dothideomycetes. Fungal Genetics and Biology, in press.
  2. Faris, J. D., Liu, Z. and Xu, S. S. (2013). Genetics of tan spot resistance in wheat. Theor Appl Genet 126(9): 2197-2217.
  3. Liu, Z.H., and Friesen, T.L. (2012). DAB staining and visualization of hydrogen peroxide in wheat leaves. Bio-protocol 2(24): http://www.bio-protocol.org/wenzhang.aspx?id=309 (invited online method article).
  4. Liu, Z. H., Zhong, S., Stasko, A. K., Edwards, M. C. and Friesen, T. L. (2012). Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Phytopathology 102(5): 539-546.
  5. Crook, A. D., Friesen, T. L., Liu, Z. H., Ojiambo, P. S. and Cowger, C. (2012). Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Phytopathology 102(5): 498-505.
  6. Liu, Z., Zhang, Z., Faris, J. D., Oliver, R. P., Syme, R., McDonald, M. C., McDonald, B. A., Solomon, P. S., Lu, S. and Shelver, W. L. (2012). The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS pathogens 8(1): e1002467.
  7. Liu, Z. and Friesen, T. L. (2012). Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol Biol 835: 365-375.
  8. Zhang, Z., Friesen, T. L., Xu, S. S., Shi, G., Liu, Z., Rasmussen, J. B. and Faris, J. D. (2011). Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J 65(1): 27-38.
  9. Leng, Y., Wu, C., Liu, Z., Friesen, T. L., Rasmussen, J. B. and Zhong, S. (2011). RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus. Mol Plant Pathol 12(3): 289-298.
  10. Liu, Z., Ellwood, S. R., Oliver, R. P. and Friesen, T. L. (2011). Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 12(1): 1-19.
  11. Abeysekara, N. S., Friesen, T. L., Liu, Z., McClean, P. E. and Faris, J. D. (2010). Marker development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 in hexaploid wheat. The Plant Genome 3(3): 179-189.
  12. Ellwood, S. R., Liu, Z., Syme, R., Lai, Z., Hane, J., Keiper, F., Oliver, R. P. and Friesen, T.L. (2010). A first genome sequence survey of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biology 11:R109, doi:10.1186/gb-2010-11-11-r109.
  13. Liu, Z., Faris, J. D., Edwards, M. C. and Friesen, T. L. (2010). Development of Expressed Sequence Tag (EST)–based markers for genomic analysis of a barley 6H Region harboring multiple net form net blotch resistance genes. The Plant Genome 3(1): 41-52.
  14. Liu, Z. and Friesen, T. (2010). Identification of Pyrenophora teres f. maculata, causal agent of spot type net blotch of barley in North Dakota. Plant Disease 94(4): 480-480.
  15. Liu, Z., Faris, J. D., Oliver, R. P., Tan, K. C., Solomon, P. S., McDonald, M. C., McDonald, B. A., Nunez, A., Lu, S., Rasmussen, J. B. and Friesen, T. L. (2009). SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 5(9): e1000581.
  16. Friesen, T. L., Chu, C. G., Liu, Z. H., Xu, S. S., Halley, S. and Faris, J. D. (2009). Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor Appl Genet 118(8): 1489-1497.
  17. Abu Qamar, M., Liu, Z. H., Faris, J. D., Chao, S., Edwards, M. C., Lai, Z., Franckowiak, J. D. and Friesen, T. L. (2008). A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theor Appl Genet 117(8): 1261-1270.
  18. Liu, Z., Friesen, T. L., Ling, H., Meinhardt, S. W., Oliver, R. P., Rasmussen, J. B. and Faris, J. D. (2006). The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49(10): 1265-1273.
  19. Friesen, T. L., Stukenbrock, E. H., Liu, Z., Meinhardt, S., Ling, H., Faris, J. D., Rasmussen, J. B., Solomon, P. S., McDonald, B. A. and Oliver, R. P. (2006). Emergence of a new disease as a result of interspecific virulence gene transfer. Nature genetics 38(8): 953-956.
  20. Liu, Z. H., Anderson, J. A., Hu, J., Friesen, T. L., Rasmussen, J. B. and Faris, J. D. (2005). A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111(4): 782-794.
  21. Liu, Z. H., Faris, J. D., Meinhardt, S. W., Ali, S., Rasmussen, J. B. and Friesen, T. L. (2004). Genetic and Physical Mapping of a Gene Conditioning Sensitivity in Wheat to a Partially Purified Host-Selective Toxin Produced by Stagonospora nodorum. Phytopathology 94(10): 1056-1060.
  22. Liu, Z. H., Friesen, T. L., Rasmussen, J. B., Ali, S., Meinhardt, S. W. and Faris, J. D. (2004). Quantitative Trait Loci Analysis and Mapping of Seedling Resistance to Stagonospora nodorum Leaf Blotch in Wheat. Phytopathology 94(10): 1061-1067.
  23. Han, F., Liu, B., Fedak, G. and Liu, Z. H. (2004). Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theoretical and Applied Genetics 109(5): 1070-1076.
  24. Li, H.B., Zhou, M.P., Liu, Z.H., Zhang, X., Zhu, Z.W., Ren, L.J., Huang, Y.H., Ge, M.R., and Lu, W.Z. (2001). Breeding of wheat variety "Shengkang 2" and its characteristics. Jiangsu Agricultural Science 3:23-24. (in Chinese with English abstract)
  25. Chen, J.-F., Ying, J., Wang, S.-L., Liu, Z.-H., Qi, L.-L. and Chen, P.-D. (2001). Development of Triticum aestivum-Haynaldia villosa 6VS ditelosomic substitution line via phlb mutant]. Yi chuan xue bao= Acta genetica Sinica 28(1): 52. (in Chinese with English abstract).
  26. Liu, Z.H., and Lu, W.Z. (2000). Research advance and control strategy on sharp eyepot in wheat (review). Journal of Jiangsu Agriculture Science 16(3): 185-190. (in Chinese with English abstract)
  27. Chen, J.F., Chen, P.D., Liu, Z.H., and Liu, D.J. (2000). Development of ditelosomic chromosome of 6V substituted in wheat chromosome. Acta Genet Sinica 23(3): 184-191. (in Chinese with English abstract)
  28. Liu, Z.H., and Chen, P.D. (1999). Study on the effectiveness of genetic system controlling homoeologous chromosome pairing in common wheat. Journal of Nanjing Agriculture University 22(1): 1-5. (in Chinese with English abstract).
  29. Liu, Z.H., Zhang, X., Li, H.B., and Yao, J.X. (1999). A preliminary study on the inheritance of the resistance to sharp eyespot in wheat. Journal of Nanjing Agriculture University 22(3): 5-8. (in Chinese with English abstract)
  30. Liu, Z.H., Zhang, X., Li, H.B., and Yao, J.X. (1999). Screening source with resistance to sharp eyespot and powdery in wheat. Jiangsu Agriculture Research 20(3): 16-20. (in Chinese with English abstract)
  31. Zhang, X., Zang, Y.H., Liu, Z.H., Li, H.B., and Yao, J.X. (1998). Random amplified polymorphic DNA analysis associated with resistance gene Pm 17 to powdery mildew in wheat using bulked segregant analysis. Journal of Jiangsu Agriculture College 19(2): 67-70. (in Chinese with English abstract)
1 Protocol published
DAB Staining and Visualization of Hydrogen Peroxide in Wheat Leaves
Authors:  Zhaohui Liu and Tim Friesen , date: 12/20/2012, view: 10952, Q&A: 0
The production of hydrogen peroxide (H2O2) has been recognized as an important feature of plant cells that undergo programmed cell death (PCD) during host-pathogen interaction. Thordal-Christensen et al. (1997) first ...
5 Protocols reviewed
Establishing a Symbiotic Interface between Cultured Ectomycorrhizal Fungi and Plants to Follow Fungal Phosphate Metabolism
In ectomycorrhizal plants, the fungal cells colonize the roots of their host plant to create new organs called ectomycorrhizae. In these new organs, the fungal cells colonize the walls of the cortical cells, bathing in the same apoplasm as the plant ...
More >
Isolation and Characterization Procedure for Indole Alkaloids from the Marquesan Plant Rauvolfia Nukuhivensis
Authors:  Nicolas J. Martin, Maël Nicolas, Gaël Lecellier and Phila Raharivelomanana, date: 10/20/2015, view: 5008, Q&A: 0
A plethora of natural products, mostly secondary metabolites, are isolated and purified from many different organisms, like plants, fungi, algae, marine invertebrates, etc. The extraction procedure is specific to each organism, but some ...
More >
44 Protocols edited
Induction and Quantification of Patulin Production in Penicillium Species
Authors:  Yong Chen, Boqiang Li, Zhanquan Zhang and Shiping Tian, date: 06/05/2017, view: 3007, Q&A: 0
Patulin, a worldwide regulated mycotoxin, is primarily produced by Penicillium and Aspergillus species during fruit spoilage. Patulin contamination is a great concern with regard to human health because exposure of the mycotoxin ...
More >
Pathogenicity Assay of Penicillium expansum on Apple Fruits
Authors:  Yong Chen, Boqiang Li, Zhanquan Zhang and Shiping Tian, date: 05/05/2017, view: 3566, Q&A: 0
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and leads to huge economic losses during postharvest storage and shipping. Furthermore, it produces mycotoxin on the infected fruits that may ...
More >
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.