Advanced Search
Published: Sep 21, 2021 Views: 809
A protocol for taxonomic profiling of fecal and intestinal microbiota in the African turquoise killifish (Nothobranchius furzeri)
Jens Seidel, Miriam Popkes, Dario Riccardo Valenzano*
Max Planck Institute for Biology of Ageing
CECAD, University of Cologne
dvalenzano@age.mpd.de; dvalenzano@leibniz-fli.de
Abstract:
Killifish are emerging as a new laboratory system to study a range of questions, from the genetic basis of embryo dormancy (Hu et al., 2020) to life history trait evolution (Cui et al., 2019; Willemsen et al., 2020), age-dependent neurodegeneration (Di Cicco et al., 2011; Matsui et al., 2019; Tozzini et al., 2012; Van Houcke et al., 2021), as well as the connection between microbial community structure and biology of aging (Smith et al., 2017). Here we optimized a protocol for 16S rRNA amplicon sequencing in gut tissue and fecal pellets from laboratory turquoise killifish. We used this protocol to study gut microbiota composition in natural killifish populations, as well as in laboratory killifish. Here we provide a detailed protocol to collect samples, extract DNA, amplify and sequence the V3V4 (as well as the V4) region of the 16S rRNA gene.
Background:
Over the past decade, advances in high-throughput sequencing helped uncover the vast diversity of microbial communities present in environmental samples and on host epithelia. Compared to shotgun metagenomics, 16S rRNA amplicon sequencing requires limited sequencing coverage and is commonly used to characterize the microbial taxonomic composition of a large number of samples. In our past work, we leveraged sequencing of the V3V4 region of the 16S rRNA to unravel age-associated community dynamics in the intestinal microbiota of the short-lived vertebrate Nothobranchius furzeri (Smith et al., 2017). Here, we describe a comprehensive protocol for high-throughput extraction of genomic DNA from intestinal and fecal samples of Nothobranchius furzeri and provide step-by-step instructions for the generation of 16S V3V4 rRNA gene libraries. The amplicon size of the V3V4 region is compatible with use of the Illumina MiSeq technology (2x300), while the size of the V4-fragment amplicon is compatible with HiSeq platforms (2x250), which allows for higher sequencing depth. In this protocol, we provide details for sequencing both the V3V4 (for gut and stool) and the V4 region (for stool only).
Materials and reagents
Consumables:
Reagents:
Recipes:
80 mM EDTA (pH 8.0)
200 mM Tris (pH 8.0)
100 mM NaCl
1x Phosphate Buffered Saline
Oligonucleotides:
Table 1. Overview of 16S rRNA primer. Depending on the target region, either the 341F/805R primer pair or the updated 515F/806R primer pair was used. A staggering pad of 6-8 random nucleotides can be added to the primer to increase nucleotide diversity during sequencing.
| Targetregion | Primer Name | Sequence | Reference |
| V3V4 | 341F | ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTACGGGNGGCWGCAG | (Caporaso et al., 2011) |
| 805R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACTACHVGGGTATCTAATCC | (Caporaso et al., 2011) | |
| V4 | 515F | ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGYCAGCMGCCGCGGTAA | (Parada et al., 2016)
|
| 806R | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCGGACTACNVGGGTWTCTAAT | (Apprill et al., 2015)
|
Equipment
Note: No specific equipment is required. Any appropriate device can be used.
Procedure
Fecal sampling and dissections
DNA extraction
Library preparation
Table 2. Setup of reactions for the first PCR reaction.
| Intestine V3V4 | Feces V3V4 | Feces V4 | |
| Sample type: | intestine | feces | feces |
| Target region: | V3V4 | V3V4 | V4 |
| DNA input: | ±50 ng | 1-5 ng | 1-5 ng |
| Forward primer: | 1 ul 341F (10 uM) | 1 ul 341F (10 uM) | 1 ul 515F (10 uM) |
| Reverse primer | 1 ul 805R (10 uM) | 1 ul 805R (10 uM) | 1 ul 806R (10 uM) |
| KAPA HiFi HotStart ReadyMix | 12.5 ul | 12.5 ul | 12.5 ul |
| DNAse/RNAse-free water | adj. 25ul | adj. 25ul | adj. 25ul |
| Number of cycle: | 30 cycles | 26 cycle | 26 cyle |
Table 3. Setup of reactions for the second PCR reaction.
| DNA input: | 7.5 ul of cleaned PCR1 product |
| Forward primer: | 2.5 uL i5/P1 primer (10 uM) |
| Reverse primer | 2.5 uL i7/P2 primer (10 uM) |
| KAPA HiFi HotStart ReadyMix | 12.5 ul |
References
Apprill, A., McNally, S., Parsons, R. and Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology v75(2): 9.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N. and Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108 Suppl 1: 4516-4522. https://www.ncbi.nlm.nih.gov/pubmed/20534432
Cui, R., Medeiros, T., Willemsen, D., Iasi, L. N. M., Collier, G. E., Graef, M., Reichard, M. and Valenzano, D. R. (2019). Relaxed Selection Limits Lifespan by Increasing Mutation Load. Cell 178(2): 385-399 e320. https://www.ncbi.nlm.nih.gov/pubmed/31257025
Di Cicco, E., Tozzini, E. T., Rossi, G. and Cellerino, A. (2011). The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp Gerontol 46(4): 249-256. https://www.ncbi.nlm.nih.gov/pubmed/21056099
Hu, C. K., Wang, W., Brind'Amour, J., Singh, P. P., Reeves, G. A., Lorincz, M. C., Alvarado, A. S. and Brunet, A. (2020). Vertebrate diapause preserves organisms long term through Polycomb complex members. Science 367(6480): 870-874. https://www.ncbi.nlm.nih.gov/pubmed/32079766
Matsui, H., Kenmochi, N. and Namikawa, K. (2019). Age- and alpha-Synuclein-Dependent Degeneration of Dopamine and Noradrenaline Neurons in the Annual Killifish Nothobranchius furzeri. Cell Rep 26(7): 1727-1733 e1726. https://www.ncbi.nlm.nih.gov/pubmed/30759385
Parada, A. E., Needham, D. M. and Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18(5): 1403-1414. https://www.ncbi.nlm.nih.gov/pubmed/26271760
Smith, P., Willemsen, D., Popkes, M., Metge, F., Gandiwa, E., Reichard, M. and Valenzano, D. R. (2017). Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife 6. https://www.ncbi.nlm.nih.gov/pubmed/28826469
Tozzini, E. T., Baumgart, M., Battistoni, G. and Cellerino, A. (2012). Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell 11(2): 241-251. https://www.ncbi.nlm.nih.gov/pubmed/22171971
Van Houcke, J., Marien, V., Zandecki, C., Vanhunsel, S., Moons, L., Ayana, R., Seuntjens, E. and Arckens, L. (2021). Aging impairs the essential contributions of non-glial progenitors to neurorepair in the dorsal telencephalon of the Killifish Nothobranchius furzeri. Aging Cell 20(9): e13464. https://www.ncbi.nlm.nih.gov/pubmed/34428340
Willemsen, D., Cui, R., Reichard, M. and Valenzano, D. R. (2020). Intra-species differences in population size shape life history and genome evolution. Elife (In Press).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Share
Bluesky
X
Copy link