Advanced Search
Published: Jul 15, 2021 DOI: 10.21769/BioProtoc.1010617 Views: 4970
研究背景
生物类群的历史分异时间一直是生物学研究的基础和热点问题。但由于逝去历史的诸多不确定性,如何准确推断分异时间长期以来也面临各种挑战。伴随分子数据的涌现、化石信息的积累、以及演化模型 (如分子钟) 的发展,贝叶斯定年法近些年得到了广泛关注和应用。该方法将置换模型、演化速率、类群分异过程等纳入一个整体的统计学分析框架中,将化石信息纳入先验模型,从而估算类群的绝对历史分异时间。
常用的贝叶斯定年方法可以分为两类,一类是节点定年 (node dating),另一类是支端定年 (tip dating),其主要区别在于如何利用化石的信息。节点定年法把化石信息转化为概率分布来校准系统发生树上的部分内部节点,继而估计其它内部节点的分异时间 (e.g., Drummond et al., 2006)。这一类方法通常应用于仅包含现生类群的分析。支端定年法则直接利用化石信息,把化石和现生类群同时作为系统发生树的支端进行分析,从而估计树中内部节点的分异时间 (Pyron, 2011; Ronquist et al., 2012)。
支端定年相比节点定年在理论方面存在诸多优势。比如:首先,支端定年可以充分利用化石和现生类群的形态数据,从而可以开展全证据支端定年 (total-evidence tip dating) 分析。由于一般无法获得化石的分子数据,因此化石的系统发生位置由形态数据决定。其次,支端定年可以潜在利用与所研究类群相关的所有化石记录,无需像节点定年仅挑选与某节点有关的最古老的化石记录。第三,支端定年只需根据化石自身年代信息设置时间校准先验,无需对某节点的历史分异时间特别挑选统计分布以描述其时间先验。特别伴随描述类群分异及化石采样过程的石化生灭过程 (fossilized birth-death process, FBD) 模型的提出 (Stadler, 2010),支端定年得到了广泛应用。具体分析还可根据实际情况针对各历史时间段设置不同分异和采样速率,以及根据现生类群取样情况设置多样化采样策略等 (Gavryushkina et al., 2014; Zhang et al., 2016)。多项研究提示:贝叶斯支端定年在推断类群历史分异时间方面具有良好的准确性和精确性 (如Gavryushkina et al., 2014; Zhang et al., 2016; Luo et al., 2020)。
借助BEAST 2 软件包 (Bouckaert et al., 2019) 及Tracer (Rambaut et al., 2018)、FigTree (http://tree.bio.ed.ac.uk/software/figtree/) 等软件,本文将展示贝叶斯支端定年的基本操作步骤和要点信息。
仪器设备
BEAST 2、Tracer、Figtree在Windows、Linux、macOS等主流计算机操作系统下均可运行,界面基本一致。由于篇幅所限,本文仅展示macOS Big Sur (11.0.1) 系统下的操作界面和流程。
软件版本信息及下载地址
BEAST是根据马尔可夫链蒙特卡罗 (MCMC) 算法开展贝叶斯进化分析的开源免费软件。其虽然主要用于推断生物类群的历史分异时间,但也可以用于构建系统发生树、重建类群祖先性状、估计种群大小、实施模型选择等等 (Bouckaert et al., 2019)。和BEAST 1不同,BEAST 2采用崭新的架构编写,突出模块化,可以通过加载模块或软件包从而拥有多种功能。BEAST 2软件包中除主要实施MCMC分析的BEAST程序外,还拥有BEAUti、LogComiber、TreeAnnotator等多个程序可以在前期参数设置、后期数据整理等方面提供帮助。
BEAST 2软件包可以从官方网站https://www.beast2.org下载最新版本。其安装步骤请参照下载文件夹中的README.txt文件。本文采用撰写时的最新版本BEAST v.2.6.3。BEAST 2的正常运行依赖于Java v8或更高版本。因此,需首先安装Java以保证BEAST 2的正常运行。Tracer和FigTree在本文用于将BEAST分析结果可视化,从而易于对结果进行判定和解析。其分别可以从https://www.beast2.org/tracer-2/和http://tree.bio.ed.ac.uk/software/figtree/下载最新版本。本文采用Tracer v1.7.1和FigTree v1.4.4。
实验步骤
小结与建议
本文向读者展示了使用BEAST 2软件包进行贝叶斯全证据支端定年分析的基本流程。值得注意的是,贝叶斯支端定年分析也可在化石和现生类群形态特征数据缺失的情况下实施 (Heath et al., 2014)。该情况下,类似节点定年,一般需要对化石的系统发生位置设置拓扑限制;后验概率则会在兼顾拓扑限制同时,根据FBD先验统计化石系统发生位置的各种可能。具体操作可参考:https://taming-the-beast.org/tutorials/FBD-tutorial/。这种 (非全证据) 的贝叶斯支端定年特别适用于分子数据不断涌现但形态特征数据相对稀缺的系统基因组学时代。
另需注意的是,虽然支端定年存在诸多理论优势,但由于其涉及形态特征和化石数据,所以在实际应用中也可能面临不少挑战。比如,化石的形态特征数据会存在不完整或片碎化等特点,容易对化石的系统发生位置推断造成偏倚;用于描述形态特征变换的Mk/Mkv模型过于简单,往往不能充分反映形态特征的复杂特点;形态特征是否遵循形态钟仍有待研究,等等。所以,对于贝叶斯支端定年的实际分析结果,特别是依据形态数据推断的化石系统发育位置,仍需结合其它证据 (如古生物学证据) 等综合考虑。
竞争性利益声明
本文作者无利益纷争。
致谢
作者首先感谢bio-protocol为本文提供了发表平台,同时也特别感谢同行专家提出的宝贵修改意见。
参考文献
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.
Share
Bluesky
X
Copy link