To calculate dMRCA for each model at each time point, we counted the number of positions at which the called allele was different from the ancestral allele for each isolate, assessing only SNP positions that were polymorphic among isolates from the particular time point, and averaged the results. SNPs were categorized into 6 types, based on the chemical nature of the single nucleotide changes. We computed the mutation spectrum for each model and then computed the mean and standard deviation of each of the 6 types. The frequency of G-C to A-T mutation was the most abundant in all three models. The frequency of A-T to G-C mutation was significantly higher in the zebrafish model than that in the other two models.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.