Bacterial DNA was extracted from the feces using an E.Z.N.A® Stool DNA kit (Omega Bio-Tek, Inc.; Norcross, GA, USA) and purified using magLEAD 12gc (Precision System Science Co., Ltd.; Chiba, Japan). PCR was performed using KAPA HiFi HotStart ReadyMix (Nippon Genetics Co.,Ltd.; Tokyo, Japan) and the primer set (forward: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′, and reverse: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) for the V3–V4 regions of 16S rRNA. The amplicons were purified using AMPure XP (Beckman Coulter; Brea, CA, USA). DNA from each sample was added to different index sequences using the Nextera XT index kit (Illumina; San Diego, CA, USA). Mixed samples were prepared by pooling approximately equal amounts of each amplified DNA and sequenced using Miseq Reagent Kit V3 (600 cycle) and a MiSeq sequencer (Illumina), in accordance with the manufacturer’s instructions.
The sequencing data were analyzed using Qiime2 (version 2020.11) [32]. To trim the primer region from the raw sequences, Cutadapt in the Qiime2 plugin was used (https://doi.org/10.14806/ej.17.1.200, accessed on 27 May 2021). The sequences without primer regions were processed for quality control, paired-end read joining, chimera filtering, and amplicon sequence varient (ASV) table construction using the DADA2 algorithm [33]. For each ASV-representative sequence, BLAST [34] was used to assign the taxonomy based on the SILVA database (version 138) [35]. After randomly sampling 4100 reads using a feature table [36], the compositional data were converted, and diversity analysis was performed.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.