4.6.1. Sample Preparation

SZ Sevasti-Kiriaki Zervou
KM Kimon Moschandreou
AP Aikaterina Paraskevopoulou
CC Christophoros Christophoridis
EG Elpida Grigoriadou
TK Triantafyllos Kaloudis
TT Theodoros M. Triantis
VT Vasiliki Tsiaoussi
AH Anastasia Hiskia
request Request a Protocol
ask Ask a question
Favorite

Analysis of CTs (CYN, ATX, NOD, dmMC-RR, MC-RR, MC-YR, MC-HtyR, dmMC-LR, MC-LR, MC-HilR, MC-WR, MC-LA, MC-LY, MC-LW, and MC-LF) and CPs (MG FR1, MG FR3, MG T1, MG T2, AER 602/K139, AER 298A, AEG A, AP B, AP F, and OSC Y) in water samples was carried out by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). For the determination of intra- and extracellular CTs and CPs, water samples were first filtered through GF/F filters and then the filters and filtered water were analyzed. Intracellular CTs and CPs were extracted from the filters’ biomass by an extraction mixture containing 75% MeOH:25% H2O. After evaporation of the extract and reconstitution with MeOH: H2O (5:95 v/v), the final solution was injected into the LC-MS/MS for analysis [31]. Filtered water samples were pre-treated using the dual cartridge (HLB and Envi-Carb) SPE process [33]. Briefly, water samples, after adjustment to pH 11, were passed through a dual cartridge assembly of HLB and ENVI-Carb. Recovery of extracellular CTs and CPs was achieved by reversing the cartridges and eluting with a mixture of 10 mL DCM:MeOH (40:60, v/v), containing 0.5% FA. The extract was dried and the residue was re-dissolved with 400 μL MeOH: H2O (5:95, v/v) prior to LC-MS/MS analysis.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

0/150

tip Tips for asking effective questions

+ Description

Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.

post Post a Question
0 Q&A