Single cell tests

JL Jing Liu
MJ Menggai Jiao
LL Lanlu Lu
HB Heather M. Barkholtz
YL Yuping Li
YW Ying Wang
LJ Luhua Jiang
ZW Zhijian Wu
DL Di-jia Liu
LZ Lin Zhuang
CM Chao Ma
JZ Jie Zeng
BZ Bingsen Zhang
DS Dangsheng Su
PS Ping Song
WX Wei Xing
WX Weilin Xu
YW Ying Wang
ZJ Zheng Jiang
GS Gongquan Sun
request Request a Protocol
ask Ask a question
Favorite

The membrane electrode assembly (MEA) includes cathode gas diffusion layer (GDL), cathode catalyst layer, anode GDL, anode catalyst layer and proton exchange membranes. The GDL on both electrodes was polytetrafluoroethylene (PTFE)-treated carbon paper (Toray TGP-H-060) covered with 0.4 mg cm−2 carbon powder containing 40 wt% PTFE. The cathode catalyst Pt1-N/BP was mixed with Nafion solution (DuPont, 5 wt %) and ethanol with a mass ratio of 1:20:30 to obtain a uniform ink, which was then brushed onto the cathode GDL to obtain the cathode. The loading of Pt1-N/BP on the electrode was 2.5 mg cm−2. The anode catalyst layer was prepared by a catalyst-coated-membrane procedure. Specifically, 20 wt% Pt/C (Johnson Matthey), Nafion solution and absolute ethanol with a mass ratio of 1:5:200 were mixed uniformly to obtain catalyst ink, which was directly sprayed on one side of the Nafion212 membrane until the Pt loading is 0.08 mg cm−2to obtain the anode catalyst layer after dried. Then, the MEA components were stacked up in the order of anode GDL, Nafion membrane with the anodic catalyst layer facing down and cathode GDE with the cathodic catalyst layer facing down, and then placed on a hot plate at 130 °C for 120 s without pressure. The obtained MEA was sandwiched between two Au-plating stainless steel bi-polar plate-embedded graphite plates with flow fields. The active area of the MEA is 1 cm2. The single cell was evaluated on a fuel cell test station (Green Light Inc.) at a cell temperature of 80 °C. The anode supply was pure H2 and the flow rate was 100 sccm with 100% humidity. The cathode supply was pure O2 and the flow rate was 200 ml min−1 with 100% humidity. The discharging curve was recorded at the back pressure of 0.2 bar. The durability or the lifetime of the single cell was tested at 0.5 V and the back pressure of 0.2 bar, with the other conditions unchanged. The fuel cell with commercial Pt/C as both cathode and anode was prepared and tested in the same way as described above.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

0/150

tip Tips for asking effective questions

+ Description

Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.

post Post a Question
0 Q&A