We used custom-written MATLAB code to transform and analyze photometry data. We first binned the separate photometry (GCaMP or dLight) and control channels into 1 min epochs. We transformed the control channels of each bin to a linear fit of its respective raw photometry channel, and calculated dF/F for each bin with the formula (rawPhotometry -FittedControl)/FittedControl61. We then extracted the dF/F trace corresponding to 3 s before and after every light train, extracted the corresponding area under the curve, and performed a repeated measures ANOVA with time (before and after stimulation train) and stimulation (2, 4, 8, and 16 pulses or 25 and 50 Hz) (GraphPad Prism) on the extracted area under the curve for each region of individual animal. We performed post hoc t-tests with Benjamini and Hochberg correction on time for each pulse when the interaction was significant.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.