To obtain networks of co-expressed transcripts that were categorized as modules, we performed a Weighted Gene Co-expression Network Analysis (WGCNA). The counts obtained with Kallisto (v0.43.0) [79] were transformed using variance stabilizing transformation (vst) as implemented in DESeq2 (v1.18.1) [81]. The vst transformed counts were used to perform a co-expression network analysis with the R package WGCNA (v1.63) [85]. For more details on the methodology, see [85–87]. In short, (Additional File 1, Figure S1, workflow, right side), a similarity matrix was built by calculating Pearson correlations between the expression values of all pairs of transcripts. Using the similarity matrix, a signed weighted adjacency matrix was obtained as described by the formula:
Where corij is the Pearson correlation between the expression pattern of transcript ‘i’ and transcript ‘j’ (the similarity value). The value of β was chosen based on the soft-thresholding approach [85]. With this value of β, we obtained a weighted network with an approximate scale-free topology (β = 14, scale-free topology R2 = 0.84). In a signed weighted adjacency matrix negative and small positive correlations get negligibly small adjacency values shifting the focus on strong positive correlations. Seeing the adjacency matrix as a network, the nodes correspond to the transcripts and the connections between nodes correspond to the adjacency values (transformed correlation coefficients). A topological overlap matrix (TOM), which in addition to the adjacency matrix considers topological similarity (shared neighbors reinforce the connection strength between two nodes), was constructed using the adjacency matrix [88]. To define transcript modules, a hierarchical clustering tree was constructed using the dissimilarity measure (1-TOM). Transcript modules were defined by cutting the branches of the tree using the Dynamic Hybrid Tree Cut algorithm [89] and the minimum module size was set to 30 transcripts. Transcript modules with similar expression profiles were merged by hierarchical clustering of the eigengene correlation values. Briefly, a hierarchical clustering tree was created with the eigengene dissimilarity measure (1-correlation coefficient of eigengenes) and a tree height cut of 0.20 was used (corresponds to an eigengene cor ≥ 0.80). Eigengenes were calculated with the function moduleEigengenes (default settings) [85]. A module eigengene corresponds to the module’s first principal component and can be seen as a weighted average expression profile [85]. To find significantly associated modules with age, correlations between age and eigengenes of the merged modules were calculated. Each module was named after a color by WGCNA.
The adjacency matrix of the WGCNA was visualized using Cytoscape (v3.7.1) [90], only including pairs of nodes with a corij ≥ 0.90. Each module’s color corresponds with the respective module name (e.g., saddlebrown color for the saddlebrown module).
To identify co-expression modules containing age-related DETs, we looked for age-related DETs from the Iso-MaSigPro analysis in the WGCNA modules. Those modules that were significantly correlated with age and held the highest number of Iso-MaSigPro DETs were further inspected.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
 Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.