2.4. GC-FID and GC-MS Analysis of FAMEs

RS Ramesh Kumar Saini
AA Awraris Derbie Assefa
YK Young-Soo Keum
ask Ask a question
Favorite

FAMEs were quantitatively analyzed with GC (Agilent 7890B, Agilent Technologies Canada, Inc., Mississauga, ON, Canada) equipped with an autoinjector, an FID, and an SP-2560 capillary column (100 m, 0.20 μm film thickness, 0.25 mm ID; Merck KGaA, Darmstadt, Germany). The injector and the detectors were maintained at 250 °C and 260 °C, respectively. The inlet flow was 2 mL/min with a constant pressure of 54 psi. The FID parameters of hydrogen (H2) fuel flow, airflow, and make flow (nitrogen, N2) were set to 30, 400, and 25 mL/min, respectively. The column oven temperature was kept at 140 °C for 5 min, then progressively increased to 240 °C for 25 min (linear temperature program 4 °C/min and held at 240 °C for 15 min [15]. The FAMEs were precisely identified by comparing them with the retention time with authentic standards. For a more accurate qualitative analysis, the mass spectra were also recorded using a GC-MS system (QP2010 SE; Shimadzu, Kyoto, Japan), following the optimized GC-FID analysis thermal program. The identity of FAMEs was confirmed by comparing their fragmentation pattern with authentic standards, and also by using the National Institute of Standards and Technology (NIST; U.S. Department of Commerce, Gaithersburg, MD, USA) mass spectrum database (NIST08 and NIST08s).

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A