Initially we etched tantalum using a reactive-ion etch (8:3:2 CHF3:SF6:Ar chemistry at 50 mTorr, RF/ICP power of 100/100 W). However, scanning electron microscopy (SEM) images showed that reactive-ion etches can produce rough edges as well as small pillars and boulders near the sidewalls, likely due to micromasking (Supplementary Fig. 2a, b). The anomalous objects in Supplementary Fig. 2b remained after the device was cleaned in piranha solution and treated in an oxygen plasma. In order to avoid these fabrication problems, we employed a wet etch composed of 1:1:1 HF:HNO3:H2O. We found that several resists delaminated before the tantalum was etched through, leaving the sidewalls and nearby tantalum visibly rough in SEM (Supplementary Fig. 2c). This problem was circumvented by using thick AZ 1518 resist (~2-μm tall), which left cleaner sidewalls (Supplementary Fig. 2d). Comparing Devices 4–10 with Devices 11–18 in Supplementary Table 1, we note that the optimized wet etch likely improved T1.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.