2.2.2 Ablation Experiments

SA Shrinidhi Adke
KM Karl Haro von Mogel
YJ Yu Jiang
CL Changying Li
request Request a Protocol
ask Ask a question
Favorite

To begin the consumption estimation, a better segmentation model was trained by performing various ablation experiments, which led to the effective end model used for testing. Labeling approach and training sample size were the two primary factors considered in the ablation experiments.

1) Labeling Approach comparison. The overall segmentation problem was simplified at the data labeling level. All the raw images were labeled according to one of the two approaches explained in the previous section. Instead of labeling the entire dataset twice to arrive at a better labeling approach for further experiments, this test was performed at the beginning with a smaller dataset. For initial comparison purposes, out of the 450 raw images, 70 were selected and manually labeled using both approaches. For this experiment, 50 training images and 20 validation images were used. Identical network configurations were selected for both labeling methods. This experiment indicated which labeling approach to follow for the remaining raw images.

Labeling each image for the two approaches took considerable time. In a standard image with two corn ears, both class instances could be labeled in one image within 3 min on average using Approach 1, while Approach 2 took 4.5 min on average. This was because, in a single image total instances of corn kernels can be more than total whole corn instances. There will be at most two whole corn instances but can be zero or multiple corn kernels present in one image, labeling multiple corn kernel instances contributed to more time in Approach 2. In the end, the Mask R-CNN model trained using images labeled by approach 1 were referred to as Model one while the one by approach 2 as Model 2.

2) Training sample size effect. One of the challenges in training effective deep learning models is the limited amount of training data. The sparsity of labeled images in the agricultural domain is a common problem for segmentation model failures resulting from overfitting to a small sample size. The number of training images required is not fixed, but they are domain and application specific. To ascertain the minimum number of training images for a good segmentation performance, this experiment was performed.

To answer this question, multiple models were trained with a different number of training images with an approach selected from the above comparison. Starting with 50 images, models were trained on increments of 50 images, up to 300 images, while keeping an uniform size in the validation dataset. In preliminary tests, it was observed that, when the selected training samples contained only the images from a certain category, (e.g. “95–100% consumed”), the resultant model performed poorly on the remaining categories, which resulted in inaccurate image segmentation. To address this data imbalance, each training procedure was performed five times by selecting the training images randomly from each category. Thus, a total of 30 different segmentation models were trained with six different sample sizes.

Apart from the major experiments mentioned above, the transfer learning phenomenon applied to this use case was also examined. During preliminary testing, one of the Mask R-CNN model was trained by initializing random weights at the beginning. Then, this model was compared to a model trained on pre-trained weights on the MS-COCO dataset (Lin et al., 2014). For better segmentation of the background from the corn ears in the image, further models were trained using COCO initial weights.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

0/150

tip Tips for asking effective questions

+ Description

Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.

post Post a Question
0 Q&A