The pH of the adsorbents was determined using a pH meter in a 1:10 adsorbent/water ratio as per the standard method [6]. The pH at the point of zero charges (pHPZC) of the adsorbents was examined based on the standard method. For this effect, 250 mL of 0.01 M NaCl solution as an electrolyte was positioned in a vessel, thermostated at 298 K, and N2 was bubbled through the solution to stabilize the pH by preventing the dissolving of CO2 from the air. In 6 Erlenmeyer flasks, 25 mL of the electrolyte was introduced and the pH was adjusted to the required value (2.00, 4.00, 6.00, 8.00, 10.00, and 12.00) by adding 0.1 M NaOH or 0.1 M HCl. The same procedure and method were performed for blank electrolyte solution (0.01 M NaCl). In each beaker, 0.25 g of the rock samples were added and shaken for 48 h. The suspension was subsequently filtrated and the final pH was determined. The point of zero charges (pHPZC) was found at the intersection point by plotting the initial pH versus the final pH.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.