Agent based modeling

EG Eyal Goldstein
JE Joseph J. Erinjery
GM Gerardo Martin
AK Anuradhani Kasturiratne
DE Dileepa Senajith Ediriweera
HS Hithanadura Janaka de Silva
PD Peter Diggle
DL David Griffith Lalloo
KM Kris A. Murray
TI Takuya Iwamura
request Request a Protocol
ask Ask a question
Favorite

Agent based modelling (ABM) is a bottom up approach for modeling complex and adaptive systems using autonomous agents, that explain macro level phenomenon [2023]. ABM is used both for studying complexity that is not easily reducible to differential equations, and discovering emergent patterns and phenomenon found in those systems, as well as study the internal dynamics of these system [24,25]. ABM has been extensively used in different fields of study for modeling complex phenomenon, such as social, political, and economical science [24]. There are now multiple programs used for ABM, including NetLogo [38], Repast [39], as well as the SpaDES package in R [40]. Recently, spatially explicit social-ecological dynamics are increasingly modelled using an Agent-based modeling approach (e.g.:[22,26,27,41]). It is commonly used for modelling social behavior including modeling land use and land cover change [26,28,29], as well as zoonotic disease transmission across landscapes (e.g.: [30]).

We used Netlogo [38] to develop a spatially explicit model that represents the dynamics of snakebites among farmers (S1 Fig). The model simulates real landscapes in the Study Area, each of which is represented by a 2x2 km study location comprised of a matrix of 10x10m grid cells. We simulated 17 study locations in total.

For the design and analysis of our model we used pattern oriented modelling (POM) [42,43]. This approach emphasizes use of multiple patterns at different hierarchical scales for calibration and validation in order to reduce uncertainty in model structure and parameters. This approach allows us to examine not only large scale phenomena (such as macro level epidemiological observations), but also probe the dynamics and intricacies of the mechanism(s) that may be hidden or unobservable by just examining the different patterns individually.

The pattern oriented modelling protocol is comprised of four steps [42]: 1) aggregate known biological data regarding a system and use it to construct a model that is related to a hypothesis and is theoretically capable of reproducing previously observed patterns; 2) determine the parameter values of the system; 3) compare systematically between the independently observed data and those patterns predicted by the model, which may involve iteratively improving the model by removing certain parameters or choosing combinations of parameters that are more plausible or better represent observed patterns; and 4) look for secondary predictions in the model, which are different from the original patterns to which the model was compared during the third step of the process.

For each one of the locations studied, the model uses a range of input data to simulate the movement and interactions of different ‘agents’ among cells for a fixed duration. We used a discrete time series comprised of both months and hours. Each month is condensed to 24 timesteps which are representative of individual hours of the daytime, and the simulation is performed across the 12 months of the year, comprising of 288 timesteps in total. Parameters and variables in the simulation are recorded and updated both hourly and monthly, depending on the agent (snake seasonal activity and farmers’ working schedules update at the beginning of each month; snake daily activity is updated at the beginning of each hour).

There are two types of agents in the model: farmers and snakes. Farmers are able to work in multiple land cover classes, depending on seasonal needs (see ‘Recording Farmer Characteristics’ below). Farmers have a state variable of working schedule, which includes the land cover type they should be farming, time of day they begin to work, and the number of hours they will spend working in that land cover class. Using the work schedule, the farmers move between the land cover they are farming and their home.

Each snake agent is characterized by a set of ecological and behavioral traits, including: species, daily activity, habitat preference, aggressiveness, and seasonal activeness. Each species is given a set of probabilities for movement between land cover classes depending on the land association factor (see “Snake distribution and behaviour” below) and number of patches for each land cover class (see “Remote sensing dataset” below).

The influence of the environment on agent activity is represented by climatic variables (precipitation and number of non-rainy days (see “Climate dataset” below)).

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A