For orthogonal translation assays, S2060 chemically competent cells were transformed with the E. coli O-rRNA plasmid and the relevant orthogonal reporter plasmid. Transformants were streaked on 1.8% agar-2xYT plates supplemented with kanamycin and carbenicillin. Plates were grown in a 37 °C incubator for 16 h. Colonies were picked into 500 µL DRM (United States Biological)60 (supplemented with kanamycin, carbenicillin, 1 mM IPTG + /- 1000 ng mL−1 aTc) in deepwell plates (VWR) and grown at 37° C with shaking at 900 RPM for 20 hours. To assay heterologous O-rRNA function, chemically competent cells carrying the sfGFP reporter plasmid were prepared (S2060.sfGFP) and transformed with the appropriate O-rRNA plasmid. E. coli O-rRNA was always transformed alongside experimental O-rRNAs as a positive control. Transformants were streaked out and picked into media as above.
To assay r-protein effects on heterologous O-rRNA function, S2060.sfGFP chemically competent cells were co-transformed with the appropriate O-rRNA plasmid and r-protein plasmid. As a positive control, E. coli O-rRNA was transformed alongside an mCherry expression plasmid. In the absence of r-protein supplementation, heterologous O-rRNAs were transformed with mCherry to maintain consistent growth rates and antibiotic selection markers. Transformants were streaked on 1.8% agar-2xYT plates supplemented with kanamycin, carbenicillin, chloramphenicol, and 200 mM glucose, picked into DRM supplemented with kanamycin, carbenicillin, chloramphenicol, 1 mM IPTG, 1000 ng mL−1 aTc, +/- 10 mM arabinose, and grown up as above. For assays using the erythromycin-dependent reporter, DRM was supplemented with 100 µg mL−1 erythromycin in addition to the above inducers and antibiotics.
To quantify fluorescence output, 150 µL of each culture were aliquoted into a 96-well black wall, clear bottom plate (Costar). OD600 and the appropriate excitation and emission wavelengths were used for fluorescence measurements (Supplementary Table 5) using either a SpectraMax M3 (Molecular Devices) or Spark (Tecan) plate reader running SoftMax Pro v6.4 or SparkControl v2.3, respectively. Fluorescence was normalized to OD600 after blank media subtraction. Data were normalized to E. coli O-rRNA sfGFP/OD600 and expressed as a percentage. When assaying the effects of r-protein complementation, data were normalized to E. coli O-rRNA (sfGFP signal) upon mCherry control plasmid induction.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.