Digestive physiology controls the quantity and quality of vegetation (e.g., fiber and nutrient content) that herbivores consume. Fermentation type therefore shapes effects on vegetation, gut passage rate, seed and nutrient dispersal distances, water requirements, and the resulting stoichiometry of excreta19,46–49 (Fig. 1). Following Hume46, fermentation type was collected as a categorical variable consisting of simple gut, hindgut colon, hindgut caecum, foregut non-ruminant, and ruminant (Table 1). These variables capture the range of fermentation adaptations across avian and mammalian herbivores. Based on these classifications and Hume46, we also ranked fermentation efficiencies (0–3) on an ordinal scale to these various digestive strategies, to facilitate quantitative functional diversity analyses (Table 1).
Fermentation types show strong phylogenetic conservatism at the family level. Therefore, for the most part, if direct anatomical evidence was not available, we inferred fermentation types from extant relatives. However, some extinct herbivores possess no close modern relatives and may have been functionally non-analog (e.g. 23 extinct ground sloths, 3 notoungulates, 4 diprotodons, 16 glyptodonts, and 12 giant lemurs). In these cases, closest living relatives, expert opinions, and craniodental morphology were used to determine the most likely fermentation system. For example, notoungulates, an extinct group from South America, possess no close relatives yet their craniodental and appendicular morphology resemble extant hindgut fermenting taxa (rhinos), and hindgut fermentation is widely considered to be ancestral in ungulates50. In all cases, we describe our justification and the state of the debate in the current literature.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.