Mitochondrial isolation and measurements of ETC complex activity

AS Andrea Stojakovic
ST Sergey Trushin
AS Anthony Sheu
LK Layla Khalili
SC Su-Youne Chang
XL Xing Li
TC Trace Christensen
JS Jeffrey L. Salisbury
RG Rachel E. Geroux
BG Benjamin Gateno
PF Padraig J. Flannery
MD Mrunal Dehankar
CF Cory C. Funk
JW Jordan Wilkins
AS Anna Stepanova
TO Tara O’Hagan
AG Alexander Galkin
JN Jarred Nesbitt
XZ Xiujuan Zhu
UT Utkarsh Tripathi
SM Slobodan Macura
TT Tamar Tchkonia
TP Tamar Pirtskhalava
JK James L. Kirkland
RK Rachel A. Kudgus
RS Renee A. Schoon
JR Joel M. Reid
YY Yu Yamazaki
TK Takahisa Kanekiyo
SZ Song Zhang
EN Emirhan Nemutlu
PD Petras Dzeja
AJ Adam Jaspersen
YK Ye In Christopher Kwon
ML Michael K. Lee
ET Eugenia Trushina
ask Ask a question
Favorite

Intact brain mitochondria were isolated from post-mortem human or mouse brain tissue using differential centrifugation with digitonin treatment73. Brain tissue was immersed into ice-cold isolation medium (225 mM mannitol, 75 mM sucrose, 20 mM HEPES-Tris, 1 mM EGTA, pH 7.4), supplemented with 1 mg/ml BSA. Tissue was homogenized with 40 strokes by pestle “B” (tight) of a Dounce homogenizer in 10 ml of isolation medium, diluted two-fold, and transferred into centrifuge tubes. The homogenate was centrifuged at 5900 × g for 4 min in a refrigerated (4 °C) Beckman centrifuge. The supernatant was centrifuged at 12,000 × g for 10 min and pellets were resuspended in the same buffer, and 0.02% digitonin was added. The suspension was homogenized briefly with five strokes in a loosely fitted Potter homogenizer and centrifuged again at 12,000 × g for 10 min, then gently resuspended in the isolation buffer without BSA and washed once by centrifuging at 12,000 × g for 10 min. The final mitochondrial pellet was resuspended in 0.1 ml of washing buffer and stored on ice. The respiratory activities were measured in Oroboros high-resolution respirometer as previously described74.

The activity of the ETC complexes was measured spectrophotometrically using a plate reader (SpectraMax M5, Molecular Devices, USA) in 0.2 ml of standard respiration buffer composed of 125 mM sucrose, 25 mM Tris-HCl (pH = 7.5), 0.01 mM EGTA, and 20 mM KCl at 25 °C. NADH-dependent activity of complex I was assayed as oxidation of 0.15 mM NADH at 340 nm (ε340 nm = 6.22 mM−1cm−1) in the assay buffer supplemented with 10 µM cytochrome c, 40 µg/ml alamethicin, 1 mM MgCl2 (NADH media). NADH:Q reductase was measured in NADH media containing 2 mg/ml BSA, 60 µM decylubiquinone, 1 mM cyanide and 5–15 µg protein per well. Only the rotenone (1 µM)-sensitive part of the activity was used for calculations. NADH:HAR reductase was assayed in NADH media containing 1 mM HAR and 2–5 µg protein per well. Complex II succinate:DCIP reductase activity was recorded at 600 nm (ε600 nm = 21 mM−1cm−1) in the KCl assay buffer (125 mM KCl, 20 mM HEPES-Tris, 0.02 mM EGTA, pH 7.6) containing 15 mM succinate, 40 µM decylubiquinone, 0.1 mM DCIP, 1 mM KCN, and 5–10 µg protein per well. Complex IV ferrocytochrome c oxidase activity was measured as oxidation of 50 µM ferrocytochrome c at 550 nm (ε550 nm = 21.5 L ∙ mM−1cm−1) in KCl assay buffer supplemented with 0.025% dodecylmaltoside and 1–3 µg protein per well. To assess the effect of CP2 on the activity, we pre-incubated 20–40 µg/ml mitochondria with various concentrations of CP2 for 10 min at 25 °C in the absence of substrates and then measured the residual activity as described above.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A