Reduced Representation Bisulfite Sequencing (RRBS)

ML Melanie Lindner
IV Irene Verhagen
HV Heidi M. Viitaniemi
VL Veronika N. Laine
MV Marcel E. Visser
AH Arild Husby
KO Kees van Oers
request Request a Protocol
ask Ask a question
Favorite

We extracted DNA from RBCs stored in 250 μl Queens buffer (with approximately 10–20 μl of RBCs per 1 ml) using the DNeasy kit (Qiagen) and from 25 mg liver with the MagAttract kit (Qiagen) according to manufacturer’s protocol. To produce Reduced Representation Bisulfite Sequencing libraries, the preparation protocol according to manufacturer’s protocol (Illumina) was used with some changes [46]. Briefly, samples were digested using the restriction enzyme MspI and the resulting DNA fragments of various size were subsequently bisulfite treated, which converts un-methylated cytosine bases into uracil bases, whereas methylated cytosine bases are resistant to the treatment. Fragmented and bi-sulfite treated DNA was then end-repaired with DNA polymerase I and A-overhangs were added to the 3′ ends of each fragment for adapter ligation. Individual sample libraries were barcoded using standard Illumina adapters. Libraries were purified, size selected with Ampure XP beads (Beckman Coulter) and concentrations were determined by quantitative polymerase chain reaction (qPCR). This selection yielded a fragment size range of approximately 30–180 base pairs, with a mean of 85. Six libraries were pooled into the same sequencing lane (Additional file 41; Table S22). Each pool was sequenced 100 bp single end (Additional file 41; Table S22) on a HiSeq2500 sequencer with a HiSeq SBS sequencing kit version 4 (Illumina). Sequencing was conducted in two separate HiSeq runs to yield enough coverage per sample. An internal positive control (PhiX) was used to obtain reliable sequence generation in the sequencing processing and the PhiX reads and adapters were removed before data analysis. Library preparation and sequencing were performed at the SciLife Lab, Uppsala University, Sweden.

Sequencing read quality was investigated with the FastQC 0.11.7 quality control tool [47]. Low quality bases as well as Illumina adapter contamination resulting from read-through of short fragments were trimmed using Trim Galore! v0.4.4 [48] with default parameters under the –rrbs mode. This mode disregards the first five base pairs in the 5′ to reduce calling of false positive methylation as a result of bisulfite treatment. Each sample’s reads from both of the sequencing runs were combined together for alignment. Trimmed sequencing reads were aligned against a bisulfite converted version of the Parus major reference genome v1.1 (https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.2) using Bismark 0.19.1 (Bioinformatics Group. Babraham Institute) aligner in rrbs mode. The reference genome contains all assembled chromosomes as well as all scaffolds. After alignment and CpG site calling we selected the sites with a minimum coverage of 10x across all samples within a tissue (RBCs and liver) for further analyses. We calculated the methylation proportion for a site in the respective sample as the proportion of methylated counts relative to the total read counts. As we were interested in sites that change over time, we excluded all sites that showed a methylation proportion of either zero or one across all samples from downstream analyses.

CpG sites were annotated, using R packages ‘GenomicFeatures’ [49] and ‘rtracklayer’ [50], to different genomic locations: TSS region (300 bp upstream - 50 bp downstream of the annotated transcription start site), promoter region (2000 bp upstream - 200 bp downstream of the annotated transcription start site), gene body (exons and introns), and 10 kb up- and downstream regions (10 kb regions adjacent to the gene body, respectively). Each identified CpG site was assigned to one of the above specified genomic regions (and the gene annotated to that region) with BEDtools v.2.26.0 [51]. See Additional file 42; Table S23 for an overview on how many CpG sites were covered per genomic location in the RBCs and liver data and how many genes were associated to the CpG sites within a respective genomic region and tissue. Earlier studies in great tits have shown that methylation levels surrounding the TSS and within promoter regions best associate with RNA expression [21, 24]. Hence, only CpG sites in the TSS or promoter region of annotated genes were used for exploring (i) tissue-general and tissue-specific changes in DNA methylation between RBCs and liver and (ii) the correlation between change in methylation and candidate gene expression in liver (qPCR, see below) correlation. CpG sites within the TSS regions, promoter regions, gene body, and 10 kb up−/downstream regions were used for exploring (iii) genome-wide associations between changes in methylation and changes in gene expression in liver, hypothalamus, or ovary (Fig. 4).

Overview of the data used in this study and how they were linked. Solid lines refer to associations in which only data from individual female great tits was used, while dashed lines refer to associations in which both individual (RRBS) and pooled (RNA-seq) data was used. Number-character combinations indicate the aims (see ‘Introduction’) of the study and the methods used (see ‘Methods’ for details)

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A