A 633-nm film of silicon nitride was first deposited on a fused silica wafer substrate via plasma-enhanced chemical vapor deposition. The wafer was temporarily coated with a protective photoresist layer and diced into smaller pieces before cleaning by sonication in acetone and isopropyl alcohol. The sample was then spin-coated with ZEP-520A before sputtering 8 nm of Au/Pd as a charge dissipation layer. The sample was exposed using a JEOL JBX6300FS electron beam lithography system, and the charge dissipation layer was removed by type TFA gold etchant. After developing in amyl acetate, a layer of aluminum was evaporated onto the sample, and after performing lift-off, an aluminum hard mask was left on the silicon nitride layer for subsequent etching. The sample was etched using an inductively coupled plasma etcher with a CHF3 and O2 chemistry, and the remaining aluminum was removed by immersing in AD-10 photoresist developer. Scanning electron micrographs of the fabricated devices are presented in fig. S3.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.