Near‐infrared light mediated tumor reduction

RP Rajendra Prasad
NJ Nishant K. Jain
AY Amit S. Yadav
DC Deepak S. Chauhan
JD Janhavi Devrukhkar
MK Mukesh K. Kumawat
SS Shweta Shinde
MG Mahadeo Gorain
AT Avnesh S. Thakor
GK Gopal C. Kundu
JC João Conde
RS Rohit Srivastava
ask Ask a question
Favorite

To observe the therapeutic outcomes (antitumor activity), different formulations of designed nanohybrids, such as NFGL–FA, DOX–NFGL–FA, and GQDs–liposome–FA, were tested on 4T1 tumor-bearing mice with and without NIR light exposure. A total of five sets of animal groups were prepared (3 mice per group) as follows: (1) control animal group (only pre-injected and untreated animals), (2) DOX–NFGL–FA injected animals (tumor reduction by targeted chemotherapeutic effect that was without NIR light treatment), (3) DOX–NFGL–FA injected animals (tumor reduction by targeted chemo–photothermal therapeutic effect that was under NIR light treatment), (4) GQD–liposome–FA injected animals (tumor reduction by produced ROS and generated heat under NIR light irradiation), and (5) NFGL–FA injected animals (tumor reduction by generated heat under NIR light irradiation where produced ROS was scavenged by the nanoparticles). Once the tumor size was notable, the above formulations of fabricated nanohybrids with minimal dose (10 mg/kg body weight, 100 µL) were intravenously injected into 4T1 tumor bearing female Balb/c mice. The nanohybrid injected 4T1 tumor-bearing animals were treated with 750 nm of NIR light (1 W/cm2 power of laser irradiation for 10 min). A total of four therapeutic courses were conducted with a time interval of 2 days followed by the same conditions mentioned above. Animal health, tumor volume, and body weight were measured during therapeutic courses. After completion of the therapeutic course, all mice were sacrificed, and all major organs and tumors were collected for ex vivo and histopathological examinations. Digital photographs were captured during these treatment days.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A