Arylphorin levels are highest at the pre-wandering phase of the 5th larval instar in noctuid larvae (Burmester, 2015). Consequently, hemolymph was collected from 60 pharate 5th instar H. virescens larvae by making a small incision at the base of the 1st and/or 2nd proleg and collecting droplets into 15 mL conical tubes containing 5 mg of phenylthiourea to block hemolymph phenoloxidase activity, and maintaining on ice. After collection, hemolymph was frozen at −20 °C until used (no longer than 2 months). Frozen hemolymph was thawed on ice and diluted 5-fold in 20 mM Tris pH 7.9 (buffer A). For fractionation, hemolymph was filtered (0.22 µm) and loaded onto a HiTrap Q HP column (GE Healthcare, Little Chalfont, UK), previously equilibrated with buffer A and connected to an AKTA FPLC system (GE Healthcare, Little Chalfont, UK). Proteins were eluted with a 0–1 M linear gradient of NaCl in 20 mM Tris pH 7.9 (buffer B) at a flow rate of 1 mL/min, collecting 1 mL fractions. To reduce the presence of smaller proteins co-purifying with α-arylphorin, fractions estimated to contain α-arylphorin (based on presence of ∼70 kDa band on electrophoretic observations) were combined and filtered using an Amicon Ultra-15 mL centrifugal unit (Millipore, Billerica, MA, USA) with a MWCO of 50 kDa. After concentration, partially purified α-arylphorin (Fig. S1) was quantified with the Coomassie Plus Protein Assay (Pierce, Waltham, MA, USA) using BSA as the standard, and then aliquoted and maintained at −80 °C until used.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.