Tail-Flick Antinociception: Dose-Response Analysis

RS Richard A. Slivicki
VI Vishakh Iyer
SM Sonali S. Mali
SG Sumanta Garai
GT Ganesh A. Thakur
JC Jonathon D. Crystal
AH Andrea G. Hohmann
request Request a Protocol
ask Ask a question
Favorite

The hot water tail-immersion test was used to assess the latency to withdraw the tail from a 53–54°C water bath in the absence of paclitaxel treatment. The distal 2 cm of the tail was immersed in the water bath and the latency to elicit a ‘flick’ response was measured as previously described (Bohn et al., 1999; Kim et al., 2015). Prior to injection, three different baseline values were recorded (i.e., with a 10-min interval between successive stimulations). A cut-off of 15 s was applied to avoid tissue damage. A within subjects dose-response curve was calculated using escalating doses of morphine (0, 1, 3, 10, 30, 100 mg/kg i.p.) administered 30 min apart. Approximately 24 h after the last morphine injection, mice were randomized to receive once daily chronic treatments with either vehicle, GAT211 (20 mg/kg i.p.), morphine (10 mg/kg i.p.), or GAT211 (20 mg/kg i.p.) + morphine (10 mg/kg i.p.) for seven consecutive days (days 2–8). Mice were then tested for tail-flick withdrawal latencies 30 min following injection of the aforementioned pharmacological treatments on days 2, 4, and 6 of chronic dosing. On day 9, mice received the same escalating doses of morphine as delivered on day 1. Values were converted to %MPE to compare antinociceptive effects of morphine following acute (i.e., day 1) and chronic (i.e., day 9) drug treatments. See Figure 4A for time course of the experimental protocol.

Co-treatment of GAT211 with morphine reduces tolerance to morphine antinociception in the tail-flick test. Schematic shows timing of experimental procedures (A); vertical arrows show time of assessment of tail flick latencies, which were measured 30 min following drug administration (i.p.) on days 2, 4, and 6 of repeated dosing (A). Ascending doses of morphine (0, 1, 3, 10, 30, 100 mg/kg i.p.) produced dose-dependent increases in tail-flick antinociception. Repeated injections of vehicle or GAT211 (20 mg/kg i.p. × 7 days) did not reliably shift the morphine dose response curve (B,C). Repeated injection of morphine (10 mg/kg i.p. × 7 days) produced a right-ward shift in the dose-response curve of morphine in producing antinociception in the tail-immersion test (D,E). The combination of GAT211 (20 mg/kg i.p.) + morphine (10 mg/kg i.p.) also produced a right-ward shift in the dose-response curve for morphine to produce tail-flick antinociception albeit to a lesser degree (D,E). Tolerance to morphine-induced antinociception in the tail immersion test was delayed by co-treatment with GAT211 (20 mg/kg i.p.) (F,G). GAT211+ morphine cotreatment produced heightened antinociception on day 4 but not on day 6 of repeated injections compared to all other groups (F,G). Vehicle and GAT211 do not elicit tail-flick antinociception when administered alone (F,G). Data are expressed as tail-flick latencies in seconds (B,D,F) and values transformed to % MPE (C,E,G) values. XP < 0.05 morphine vs. Vehicle and GAT211, +P < 0.05 GAT211 + morphine vs. Vehicle and GAT211 *P < 0.05 GAT211 + morphine vs. all other groups, two-way ANOVA followed by Bonferroni post-hoc. Mean ± SEM (n = 6 per group).

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A