All MRI scans were acquired between 2012 and 2015 at the University of Oxford Wellcome Centre for Integrative Neuroimaging (WIN), using a 3 Tesla Siemens Verio scanner. T1-weighted MPRAGE, fluid-attenuated inversion recovery (FLAIR), 60-direction diffusion tensor (DTI) and multi-band EPI 3T MRI sequences were used. T1-weighted images were processed using FSL tools (www.fmrib.ox.ac.uk/fsl) [40] and ‘fsl_anat (Beta version)’ (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat).
Two hippocampal metrics were examined. First, the presence of hippocampal atrophy, used to identify resilient and non-resilient subjects, was assessed using the Scheltens visual rating scale. Scores >0 were used as an indication of atrophy [41]. Three clinicians, blind to measured volumes and participant characteristics independently rated each subject. Discrepancies were resolved following a consensus meeting. Second, hippocampal volumes were automatically extracted using FIRST [42], corrected for intracranial volume (ICV, by dividing by total intracranial volume*100, as is standard in the literature) and averaged across sides. Volume measures were only used for comparison (see S4 Fig), and when exploring accessory hypotheses of associations between cognitive performance measures and hippocampal volume.
To discount the possibility that the non-resilient subjects had a more advanced disease process (indicated by grey matter differences) than the resilient subjects, group differences in brain-wide grey matter density were examined. Voxel-based morphometry (VBM) is an objective method to compare grey matter density between groups in each voxel (smallest distinguishable image volume) of the structural image.
To avoid overfitting, confounders were included in each model if they were: 1) an established risk factor for the outcome measure, 2) not thought to lie on the causal chain between exposure and outcome. Premorbid FSIQ and social class were included to isolate brain differences independent of cognitive reserve. Adjustment was made in the VBM analysis for: age, sex, FRS, alcohol consumption, social class and FSIQ.
Diffusion tensor images indicate the directional preference of water diffusion in neural tissue and allow inferences about the structural integrity of white matter tracts. Images were corrected for head movement and eddy currents and brain masks generated using BET. Fractional anisotropy (FA), mean (MD), axial (AD) and radial diffusivity (RD) maps were generated using DTIFit (http://fsl.fmrib.ox.ac.uk/fsl/fdt). Tract-Based Spatial Statistics (TBSS) were used [43] to perform voxelwise statistical analysis. Pre-processing prepared images for registration to standard space. Mean and skeletonized FA, MD, RD and AD images were created and thresholded. Lastly each FA, MD, RD and AD image was projected onto the relevant skeleton. To detect group differences between resilient and non-resilient subjects, a generalised linear model (GLM) was applied using permutation-based non-parametric testing (randomise) [44], correcting for multiple comparisons across space (threshold-free cluster enhancement, TFCE). Additionally for subsequent analysis, masks of the corpus callosum body were created using the ICBM-DTI-81 white-matter labels atlas [45] and used to extract mean FA indices. Adjustment for confounding included: age, sex, FRS, FSIQ, social class, alcohol consumption and depressive symptoms.
We used a hypothesis-free method to identify group differences in the synchronicity of responses across the brain between functionally distinct resting state network nodes [46]. Participants were scanned on a 3T Siemens Magnetom Verio (Erlangen, Germany) scanner with a 32-channel head coil, at the FMRIB Center, Oxford. T1-weighted structural MRI (multi-echo MPRAGE sequence with motion correction) and multiband echo-planar imaging rs-fMRI scans (voxel ¼ 2 mm isotropic, TR ¼ 1.3 s, acquisition time ¼ 10 min 10 s, multi-slice acceleration factor ¼ 6, number of volumes ¼ 460) were acquired. Rs-fMRI data were pre-processed (motion correction, brain extraction, high-pass temporal filtering at 100s, field-map correction) using FSL tools. MELODIC pre-processing includes motion correction, brain extraction, high-pass temporal filtering (cut-off 150 seconds) and field map correction [40]. To reduce noisy components, a data-cleaning approach was used. Following single-subject independent components analysis (ICA), FMRIB’s ICA-based X-noisefier (FIX) was used to automatically classify and regress out artefactual components [47]. FIX was “trained” on hand-classified ICA components on a matched training set (Whitehall II MB6). Data were registered affine to structural images using FLIRT [48]. FNIRT was used to register images into standard (MNI) space [49]. High dimensionality (dimensions = 100) ICA was performed on the pre-processed images to produce a study-specific template of spatial maps [50]. This template was used to extract time series using the dual regression approach [51]. Time courses were fed into FSLNets (v0.6) to perform network modeling [46]. Nodes were classified as ‘good’ (n = 58) or ‘bad’ (n = 42) (white matter, physiological noise, MRI or movement artifacts) [52]. The netmat was created and partial correlations were calculated [46]. Matlab was used to reorder the nodes after a hierarchical clustering of the group-average correlation netmat (S3 Fig). A nodes x edges matrix was created. Group differences were examined with randomise, controlling for multiple comparisons (family-wise error), age, sex, FSIQ and social class.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.