15N tracer batch experiments in MECs

DS Dario R. Shaw
MA Muhammad Ali
KK Krishna P. Katuri
JG Jeffrey A. Gralnick
JR Joachim Reimann
RM Rob Mesman
LN Laura van Niftrik
MJ Mike S. M. Jetten
PS Pascal E. Saikaly
request Request a Protocol
ask Ask a question
Favorite

To elucidate the molecular mechanism of electrode-dependent anaerobic ammonium oxidation by different anammox bacteria, isotopic labeling experiments were conducted in single-chamber MECs operated at set potential of 0.6 V vs. SHE. All batch incubation experiments were performed in triplicate MECs. MEC incubations without biomass for the 15N tracer batch experiments were also prepared to exclude any possibility of an abiotic reaction. Standard anaerobic techniques were employed in the batch incubation experiments. All the procedures were performed in the anaerobic chamber (Coy Laboratory Products; Grass Lake Charter Township, MI, USA). Anoxic buffers and solutions were prepared by repeatedly vacuuming and purging helium gas (>99.99%) before the experiments. The purity of 15N-labeled compounds was greater than 99%. The headspace of the MECs was replaced by repeatedly vacuuming and purging with pure (>99.99%) helium gas. Positive pressure (50–75 kPa) was added to the headspace to prevent unintentional contamination with ambient air during the incubation and gas sampling. Oxidation of NH4+ to N2 was demonstrated by incubating the MECs with 15NH4Cl (Cambridge Isotope Laboratories, 4 mM) and 14NO2 (1 mM). The MECs were incubated for 144 h at 30 °C for Ca. Brocadia and K. stuttgartiensis cultures, and at room temperature (~25 °C) for Ca. Scalindua. The concentrations of 28N2, 29N2, 30N2, 14NO, 15NO, 28N2O, 29N2O, and 30N2O gas were determined by GC/MS37. Fifty microliters of headspace gas was collected using a gas-tight syringe (VICI; Baton Rouge, LA, USA) and immediately injected into a GC (Agilent 7890A system equipped with a CP-7348 PoraBond Q column) combined with 5975C quadrupole inert MS (Agilent Technologies; Santa Clara, CA, USA). Standard calibration curve of N2 gas was prepared with 30N2 standard gas (>98% purity) (Cambridge Isotope Laboratories; Tewksbury, MA, USA).

To investigate whether hydroxylamine (NH2OH) could be produced directly from NH4+ in electrode-dependent anaerobic ammonium oxidation by anammox bacteria, single-chamber MECs were incubated with 15NH4Cl (4 mM, Cambridge Isotope Laboratories) and an unlabeled pool of 14NH2OH (2 mM) for 144 h. Liquid samples were taken every day and filtered using a 0.2 μm filter and subjected to determination of 15NH2OH and 14NH2OH. NH2OH was determined by GC/MS analysis after derivatization using acetone38. Briefly, 100 µl of liquid sample was mixed with 4 µl of acetone, and 2 µl of the derivatized sample was injected to a GC (Agilent 7890 A system equipped with a CP-7348 PoraBond Q column) combined with 5975 C quadrupole inert MS (Agilent Technologies; Santa Clara, CA, USA) in splitless mode. NH2OH was derivatized to acetoxime (C3H7NO), and the molecular ion peaks were detected at mass to charge (m/z) = 73 and 74 for 14NH2OH and 15NH2OH, respectively. Twenty-five micrometers of 14NH2OH and 15NH2OH were used as standards. To determine the source of the oxygen used in the electrode-dependent NH4+ oxidation to NH2OH, MECs were incubated with 15NH4Cl (4 mM, Cambridge Isotope Laboratories) in the presence of 10% D2O for 144 h. Stable isotopes of NH2OH were determined by GC/MS analysis after derivatization using acetone as described above.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A