We use Word2Vec [22] to generate word embedding. Specifically, we use a skip-gram model which aims to find word representations that are useful for predicting the surrounding words in a given sentence or a document consisting of sequence of words; w1,w2,...,wK. The objective is to maximize the average log probability using the following formula:
where word vectors V(w) are computed by averaging over the number of words K and c is the size of the training context. We generated the word embedding by using the default parameter settings of the Word2Vec gensim implementation: vector size (dimensionality) of 100, window size 5, minimum occurrence count of 5, and we use a skip-gram (sg) model.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.