LPS-mediated bone erosion mouse model and micro-CT and histological analysis

JK Ju-Young Kim
JB Jong Min Baek
SA Sung-Jun Ahn
YC Yoon-Hee Cheon
SP Sun-Hyang Park
MY Miyoung Yang
MC Min Kyu Choi
JO Jaemin Oh
ask Ask a question
Favorite

Five-week-old male ICR mice were purchased from Samtako Inc. (Osan, Korea). The mice were kept under controlled temperature (22–24 °C) and humidity (55–60 %) with a 12 h light/dark cycle. The use of experimental animals was reviewed by the institutional animal care and use committee (IACUC) and approved under WKU15-91. To examine the effect of EEST on LPS-induced bone destruction, 5-week-old male ICR mice were randomly divided into 3 groups (5 mice per group): Control (treated with PBS), LPS (treated only with LPS), and LPS + ST (treated with both LPS and EEST). EEST (200 mg/kg) or PBS was administered orally 1 day before LPS injection (5 mg/kg), and then every other 8 days. LPS was injected intraperitoneally on day 2 and 6. All mice were sacrificed after 8 days and femur of each mouse were examined by high-resolution micro-CT analysis and histological analysis including hematoxylin and eosin (H&E) and TRAP staining as described previously [17]. Briefly, micro-CT analysis was performed using bone-related parameters, including bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N) which are minimal set of variables that should be investigated for trabecular bone regions [18]. Nomenclature, symbols, and units used in this study were recommended by the American Society for Bone Mineral Research (ASBMR) Nomenclature Committee.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A