The fragment of the TaBASS2 sequence identified in the previous microarray was used to search wheat expression sequence tags (http://www.ncbi.nlm.nih.gov/nucest/?term=wheat) [23]. The resulting hits were assembled using CAP3 software [33], and the entire TaBASS2 coding region was cloned using a pair of primers (5′-ATG GCG CCT TCC GCG ACC TGC C-3′/5′-TCA TTC CTT GAA ATC GTC CTT G-3′) designed from the reconstructed sequence. The predicted protein sequence was aligned with other BASS2 sequences using the CLUSTALW2 algorithm (www.ebi.ac.uk/Tools/msa/clustalw2/), and a phylogenetic analysis was conducted using the neighbor-joining method implemented in the MEGA4 software [34]. To generate transgenic wheat plants, the TaBASS2 coding sequence was ligated into pGA3626 driven by a maize ubiquitin promoter and introduced into wheat cv. YM20 using the shoot apical meristem method [35]. To generate transgenic Arabidopsis, the TaBASS2 coding sequence was ligated into pROK2, and ABI4 into pJIM19 (transgene driven by a 35S promoter). The cassette containing TaBASS2 was introduced into either A. thaliana ecotype Col-0 or the knockout mutant bass2-1 (SALK_101808C), and the cassette containing the ABI4 coding sequence was introduced into TaBASS2 constitutive expressors using the floral dip method [36]. Transformants were selected as previously [32], and homozygous T3 progeny was used in the subsequent experiments.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.