To manipulate the expression of miR-124 in vivo, the rAAV (type 9) was used. The rAAV system (type 9) was a kind gift from Dr. Xiao (University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC) [50]. For the overexpression of miR-124, oligonucleotides were designed as miR-124 (5′- GATCCGGCATTCACCGC GTGCCTTATTCAAGAGATAAGG CACGCGGTGAATGCCCCGC-3′) according to the mature sequence of hsa-miR-124-3p provided by miRBase (Accession: MIMAT0000422). To achieve the efficient and long-term-suppression of miR-124, tough decoy RNAs (TuDs) were employed as described previously [51, 52]. The oligonucleotides were designed as miR-124 TuDs (5′- GATCCGACGGCGCTAGGATCATCAA CGGCATTCACCATCTGCGTGCCTTACAAGTATTCT GGTCAACAGAATACAACGGCATTCACCATCTGC GTGCCTTACAAGATGATCCTAGCGCCGTCTTCCG C-3′). The oligonucleotides and their reverse complements were synthesized by BGI Tech (Shenzhen, China) and were then then annealed and ligated into rAAV vectors. For the expression of CD151, the full-length sequence of its protein coding sequence (CDS) was amplified by PCR using the primers and then ligated into rAAV vectors. The rAAVs were packaged by triple-plasmid co-transfection in HEK293 cells and were purified as described previously [53]. The resultant rAAVs were designated as rAAV-miR-124, rAAV-miR-124 TuDs, and rAAV-CD151, respectively.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.