Confirmation of AHL Degradation Activity by HPLC-MS

MT Marta Torres
ER Esther Rubio-Portillo
JA Josefa Antón
AR Alfonso A. Ramos-Esplá
EQ Emilia Quesada
IL Inmaculada Llamas
request Request a Protocol
ask Ask a question
Favorite

To confirm the QQ activity revealed in the well diffusion agar-plate assays by the AHL-degrading strains, we used high-performance liquid chromatography plus mass-spectrometry analysis (HPLC-MS; Romero et al., 2011). C6-HSL and C10-HSL were added to 500 μL samples of overnight cultures of AHL-degrading strains in MB medium to a final concentration of 10 μM and incubated for a further 24 h at 25°C and 150 rpm rotary shaking. The cultures were then centrifuged at 2,000 × g for 5 min, extracted twice with an equal volume of ethyl-acetate, evaporated under nitrogen flux at 50°C and suspended in 400 μL of acetonitrile for HPLC-MS analysis and quantification. As negative controls, AHLs (10 μM) were added to fresh MB medium and processed and extracted in the same way.

Analyses were carried out with a HPLC 1100 series (Agilent) equipped with a C8 pre-column (2.1 mm × 12.5 mm, 5 μm particle size) and a ZORBAX Eclipse XDB-C18 2.1 mm × 150 mm column (5 μm particle size) kept at 45°C. The mobile phase was composed of 0.1% v/v formic acid in water and 0.1% v/v formic acid in acetonitrile. MS experiments were conducted on an API 4000 triple-quadrupole mass spectrometer (Applied Biosystems, CA) equipped with a Turbolon source using positive-ion electrospray, multiple-reaction monitoring (MRM) mode. The MRM signals were used to generate relative quantification information by comparison with a calibration curve constructed for molecular-ion abundance, using each of the appropriate AHL synthetic standards.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A