Electrochemical measurements

QL Qing Lv
WS Wenyan Si
JH Jianjiang He
LS Lei Sun
CZ Chunfang Zhang
NW Ning Wang
ZY Ze Yang
XL Xiaodong Li
XW Xin Wang
WD Weiqiao Deng
YL Yunze Long
CH Changshui Huang
YL Yuliang Li
request Request a Protocol
ask Ask a question
Favorite

A standard three-electrode cell was used for the electrochemical tests. A saturated calomel electrode (SCE) was used as a reference electrode, a Pt plate was used as a counter electrode and the catalyst film coated rotating ring-disk electrode (RRDE, 4 mm in diameter) was used as the working electrode. To prepare the catalyst ink, 5 mg of catalyst was ultrasonically dispersed in a solution of 50 μL Nafion (5 wt %) and 950 μL ethanol. The catalyst ink was cast onto a glassy carbon electrode. The catalyst loadings on RRDE were 0.4 mg cm−2 for metal-free catalysts and 20 μgPt cm−2 for commercial Pt/C catalyst. 0.1 M KOH solution and 0.1 M HClO4 were used as alkaline and acidic media, respectively, for ORR measurement. The potentials are presented with respect to the reversible hydrogen electrode (RHE). The conversion factors for SCE to RHE are 0.998 V in 0.1 M KOH solution and 0.304 V in 0.1 M HClO4, and were acquired by measuring the voltage between the SCE and a Pt-black-coated Pt wire that was immersed in the same electrolyte saturated with H2. To saturate the electrolyte with Ar or O2, the electrolyte was bubbled with Ar or O2 for 20 min prior to each experiment. To ensure O2 saturation during the linear sweep voltammetry measurement, O2 was flowed through the electrolyte. Cyclic voltammetry experiments were conducted with a scan rate of 50 mV s−1 between 0 and 1.2 V vs. RHE at room temperature. The catalytic activities were determined using linear sweep voltammetry (LSV) from 0 to 1.2 V at a scan rate of 5 mV s−1 at different rotation rates, while the ring electrode was held at 1.3 V vs. RHE. The current densities were normalized to the geometry area of the glassy carbon disk in the LSV curves in this paper. The H2O2 collection coefficient at the ring in RRDE experiments was 0.37, as measured using a Fe(CN)64-/3- redox couple. All the ORR currents presented in the figures are Faradaic currents, i.e. after correction for the capacitive current. The RRDE measurements were also carried out to determine the electron transfer number of ORR. The following equations were used to calculate n (the apparent number of electrons transferred during ORR) and %H2O2 (the percentage of H2O2 released during ORR),

where ID is the Faradaic current at the disk, IR the Faradaic current at the ring and N is the H2O2 collection coefficient at the ring. The apparent number of electrons transferred for ORR on the electrodes was also determined by the Koutechy–Levich equation given blow:

where j is measured current density, jk is kinetic current density, jL is diffusion limited current density, ω is electrode rotation rate, F is Faraday constant (96,485 C mol−1), C0 is bulk concentration of O2 (1.2 × 10−3 mol L−1 for both 0.1 M KOH solution and 0.1 M HClO4 solution), D0 is diffusion coefficient of O2 (1.9 × 10−5 cm2 s−1 for 0.1 M KOH solution and 1.93 × 10−5 cm2 s−1 for 0.1 M HClO4 solution) and ν is kinetic viscosity of the electrolyte (0.01 cm2 s−1 for both 0.1 M KOH solution and 0.1 M HClO4 solution)50.

Tafel slope was calculated according to Tafel equation:

Where E is the applied potential in the LSV test, a is a constant, b is the Tafel slop and jk is the kinetic current density.

The stability tests were conducted by continuous cyclic voltammetry between 0.6 and 1.2 V (vs. RHE) in O2-saturated 0.1 M KOH or HClO4 solution with scan rate of 100 mV s−1 for 5000 cycles. The stability was determined by measuring the change of LSVs before and after the cyclic voltammetry. Chronoamperometric (CA) measurements were also used to judge the stability of the catalysts with the potential holding at 0.7 V (vs. RHE) in O2-saturated 0.1 M KOH electrolyte and 0.65 V (vs. RHE) in O2-saturated 0.1 M HClO4 electrolyte at a rotating rate of 400 rpm.

Methanol tolerance experiments were developed with CA measurements at 0.8 V (vs. RHE)/0.65 V (vs. RHE) in O2-saturated 0.1 M solution at rotating rate of 1600 rpm. A volume of 4 mL methanol was injected into the KOH/HClO4 solution at ca. 400 s.

Electrochemical impedance spectroscopy (EIS) was used to study the charge transfer resistance of the catalysts. EIS tests were conducted in O2-saturated 0.1 M KOH with the rotating rate of 1600 rpm.

All the electrochemical tests were carried out at ambient temperature.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

0/150

tip Tips for asking effective questions

+ Description

Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.

post Post a Question
0 Q&A