The effects of all bi-allelic SNPs (low, medium and high effects) on the genome were determined based on the pre-built release 7.0 annotation from the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/) using SnpEff51 release 4.1l, with parameters -v -noLog -canon rice7. Using sequence ontology terms, a low-effect SNP was classified as ‘synonymous_variant’, ‘splice_region_variant’, ‘initiator_codon_variant’, ‘5_prime_UTR_premature_start_codon_gain_variant’ or ‘stop_retained_variant’. A moderate-effect SNP was identified as a ‘missense_variant’ and a high-effect SNP as a ‘start_lost’, ‘stop_gained’, ‘stop_lost’, ‘splice_donor_variant’ or ‘splice_acceptor_variant’. For indel effects, only indels with lengths that were not multiples of three were counted and SNPs overlapped with protein-coding regions (CDSs of RGAP 715 genes) were considered as the most disruptive effects on genes. Results of the SNP and indel effect analysis are given in Supplementary Data 2 Tables 3, 4. We computed the SNP numbers (proportions) of rare SNPs and homozygous singletons for a ‘typical genome’ of a subpopulation as the median SNP number (proportion) of the SNPs in a given category among those genomes for that subpopulation (Supplementary Data 2 Table 5).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.