EECs grown in 12-well plates (3 × 105 cells/well) were infected with PPRV at a multiplicity of infection (MOI) of 2, and incubated at 37 °C. To separate the adsorption and internalization processes, the EECs were pretreated with PPRV at 4 °C for 1 h and then shifted to 37 °C. Proteinase K treatment significantly affected the number of virions attached to the cell surface, suggesting that proteinase K removes the viruses attached to cells [26]. At different time points, the cells were washed with phosphate-buffered saline (PBS) and treated with proteinase K (2 mg/mL) (Solarbio, China) for 45 min at 4 °C to remove the adsorbed but not internalized virus. The proteinase K was then inactivated with 2 mM phenylmethylsulfonyl fluoride in PBS with 5% bovine serum albumin (BSA), and the cells were washed with PBS–0.5% BSA with low-speed centrifugation. Finally, the cell pellet was resuspended in DMEM/F12 and serial tenfold dilutions of the cell suspension were plated. EEC monolayers were grown in 96-well plates containing DMEM with 2% FBS. Eight replicates were established for each dilution, and 100 μL of virus diluent was added to each well. The cells were incubated at 37 °C under 5% CO2 for about 5–7 days, and the numbers of wells with or without CPE were counted. TCID50 was calculated with the Reed–Muench method and used to calculate the infectivity of the viral stocks: infectivity (plaque-forming units/mL) = 0.69 × TCID50. Each test was performed in triplicate. To determine the rate of virus internalization, a parallel set of cultures was processed under the same conditions, except that proteinase K was replaced with PBS.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.