Moisture function

ZY Zhifeng Yan
BB Ben Bond-Lamberty
KT Katherine E. Todd-Brown
VB Vanessa L. Bailey
SL SiLiang Li
CL CongQiang Liu
CL Chongxuan Liu
request Request a Protocol
ask Ask a question
Favorite

Function development: The moisture function, fm, was developed based on the primary physicochemical and biological processes controlling HR in soils. Organic carbon (C) is assumed to initially adsorb onto soil mineral surfaces and is consumed by microorganisms after two steps: the SOC converts to DOC after desorption, and the DOC is diffused to regions where microorganisms inhabit.

The flux of DOC released from SOC can be estimated by24

where θ is water content [m3 m−3], Kθ is a moisture constant reflecting the impact of moisture content on C desorption [m3 m−3]24, α is the mass transfer coefficient between SOC and DOC [s−1]46, and mSOC is organic C content per unit area of soils [kg m−2]. The released DOC is biologically degraded after diffusing into regions containing microorganisms, thus the turnover rate of SOC is related to the degree of collocation between SOC and microorganisms.

In soils where SOC and microorganisms are completely separated, the flux of bioavailable DOC for HR can be described by45

where ϕ is soil porosity [−], ms and ns are cementation and saturation exponents [−], accounting for the effects of pore structure and water connectivity on DOC diffusion45.

In soils where SOC and microorganisms are completely collocated, the released DOC can be degraded locally without diffusion. Therefore, the flux of bioavailable DOC for HR is the same as the flux of total available DOC

For most soils, microorganisms are partly separated from SOC: released DOC is degraded either locally or after diffusion. We introduce a parameter a, the SOC–microorganism collocation factor, to represent the degree of collocation between SOC and microorganisms. Consequently, the flux of bioavailable DOC for soil HR can be described by

where a increases as the degree of collocation between SOC and microorganisms decreases. Given that a = 0 when SOC and microorganisms are completely collocated (Eq. 4) and a = 1 when they are completely separated (Eq. 3), 0 < a < 1 is presumed when they are partly collocated. Therefore, Eq. 5 with 0 ≤ a ≤ 1 uniformly describes the relationship between HR rates and water content for soils with full degrees of collocation between SOC and microorganisms.

When soil HR is limited by organic C bioavailability, the HR rate is determined by the flux of bioavailable DOC and its response to water content should be the same as for the flux of bioavailable DOC. Therefore, we hypothesize that, when organic C is limiting, the relationship between soil HR rates and water content can be described by the SOC–microorganism collocation, which is represented by a as in Eq. (5).

Soil HR becomes O2 limited when water content is above the optimal value, θ > θop. Considered that O2 diffusion through liquid can be ignored compared with that through air65, the supply rate of O2 from the atmosphere to soils can be estimated using the gaseous O2 diffusion at the soil–atmosphere interface,

where DGO is the effective diffusion coefficient of gaseous O2 at the soil–atmosphere interface [m2 s−1], and can be estimated by66

where mg and ng are cementation and saturation exponents accounting for the effects of pore structure and air connectivity on O2 diffusion in soils45, respectively, and DGO,0 is the diffusion coefficient of O2 in pure air [m2 s−1]. ∇O2 is the gradient of gaseous O2 concentrations between the top soil surface and the atmosphere [g l−1 m−1], and can be expressed by18

where kGO is a coefficient representing the degree of oxygen depletion in soils, and ω reflects the impact of soil pore connectivity on O2 transport. Substituting Eqs. (7) and (8) into Eq. (6), we have

where b, b = 1 + ng + ω, is a parameter reflecting the effects of soil characteristics on O2 supply at the soil–atmosphere interface, called the O2 supply restriction factor.

The supplied O2 diffuses into soils and enters water to form dissolved oxygen (DO), which is eventually consumed by microorganisms. Regardless of O2 delivery from plant roots, the flux of bioavailable DO for soil HR should be the same as the flux of O2 supply from the atmosphere

When soil HR is limited by O2 bioavailability, its rate response to water content should be the same as for the flux of bioavailable DO. Therefore, we hypothesize that, when O2 is limiting, the relationship between soil HR rates and water content can be described by the O2 supply restriction factor, b, as shown in Eq. (9).

Theoretically, the soil HR rate maximizes when bioavailable DOC and DO are both limiting18, i.e., the supplied DO is stoichiometrically enough to react with the bioavailable DOC, FDO = νDOFDOC, where νDO is the stoichiometric coefficient of DO with respect to DOC [g g−1]. Correspondingly, the water content was regarded as optimum water content, θop, that can be calculated by

Considered only water content related terms and normalized to the maximum HR rate, the process-based moisture function, fm, can be expressed by

Function parameterization and evaluation: Parameter and initial values used in the simulations are presented in Supplementary Table 1. For the evaluation of analytical θop (Fig. 4), a = 1 and b = 1.7 were used to calculate the values of analytical θop because homogenous soils were utilized, and mSOC was calculated using ρs(1 − ϕ)HCSOC where ρs is the density of soil mineral39. kGO was estimated by the intercepts of log(∇O2) − log(ϕ − θ) curves with y-coordinate, whose value equals log(kGO) + ω log(ϕ − θ) (Fig. 3a). The simulation results showed that kGO primarily changed with SOC content and its value could be estimated using kGO=0.7465CSOC0.512 (Fig. 3a, Supplementary Fig. 2).

For the applications of fm to laboratory and field observations (Fig. 7), the values of α and νDO were not given in the literature and were estimated using Eq. (11) in Methods section, in which a, b, and θop were fitted using the measured data. Note b = 0.75 was used for the sandy loam in the laboratory incubation10, where the measured HR rates were available only for θ < θop. Consequently, α × νDO = 3.56 × 10−8 s−1 for the sandy loam10 and 2.9 × 10−7 s−1 for the loam25.

Function application:The application of fm requires to determine six parameters. The SOC–microorganism collocation factor, a, can be estimated using clay content cc, a = 2.8cc − 0.046. For soils with low clay content (cc < 0.016 g g−1), we assume a = 0; for soils with high clay content (cc > 0.37 g g−1), we assume a = 1. The O2 supply restriction factor, b, is assumed as constant, b = 0.75, in practical applications. The optimum water content, θop, can be calculated implicitly using Eq. (11) in Methods section, and its value depends on soil properties, as well as the values of a and b. If these properties are not available, we assume θop/ϕ = 0.65, a value widely observed in laboratory and fields4,18,26. The soil porosity, ϕ, can be estimated using bulk density ρb67, ϕ=1-ρbρs. The saturation exponent, ns, is relatively invariable, and can be assumed to be constant45, ns = 2. The moisture constant, Kθ, depends on organo-mineral associations, and its value can be assumed to be constant, Kθ = 0.1, when unavailable24. The determination of parameter values in the application of fm were summarized in Table 1.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

0/150

tip Tips for asking effective questions

+ Description

Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.

post Post a Question
0 Q&A