Effects of frequency on SdS reflection coefficients

CY Chunquan Yu
ED Elizabeth A. Day
MH Maarten V. de Hoop
MC Michel Campillo
SG Saskia Goes
RB Rachel A. Blythe
RH Robert D. van der Hilst
request Request a Protocol
ask Ask a question
Favorite

SdS reflection coefficients for a two-layered medium are fully described by Eq. (1) and are not frequency dependent. However, Δβ and Δρ profiles from thermodynamic modeling usually show both abrupt and gradual changes, leading to the frequency-dependent nature of SdS reflection coefficients. Due to nonlinear effects and/or phase interference, it is difficult to calculate the effect on reflection coefficients.

We use synthetic waveform modeling to derive (empirically) an equivalent depth interval, over which the total changes in density and VS can predict the observed amplitudes of SS precursors via Eq. (1). Supplementary Fig. 9 shows the procedure of deriving an equivalent depth interval using two different models: (a) a harzburgite model along a 1400 °C adiabat with gradual changes in density and velocity near 410 and 660 and (b) the PREM reference model. We first measure amplitude ratios of SdS/SS on synthetic waveforms and then correct them for geometrical spreading and intrinsic attenuation. For the gradual 1400 °C harzburgite model, the observed S410S/SS and S660S/SS amplitude ratios are equivalent to those predicted by total changes of density and VS over a depth interval of ~10 km and ~25 km, respectively. In contrast, for the PREM model, the observed S410S/SS and S660S/SS are well predicted by the first order discontinuities at 400- and 670-km depth. We apply the above procedure to all thermodynamic models. The results are shown in Fig. 6b, d.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A