A volume of 200 µL of lipid sample, approximately 5% of the lipid extract from 50-mL bacterial culture, was transferred to an Agilent glass sample vial, dried for 10 min in vacuum, and resuspended in 30 µL of 4:1 chloroform/methanol. Then a glass spotting capillary tube was used to spot the sample 1.8 cm above the bottom edge of an EMD Millipore TLC plastic sheet cut to a height of 10 cm. After drying in air at an ambient temperature of 21 °C for 20 min, the TLC sheet was placed into a TLC chamber pre-equilibrated with a mixed solvent of chloroform/methanol/water (70:25:4) or chloroform/methanol/water/acetic acid (70:25:3:1). After 25 min of TLC development, the TLC sheet was removed from the TLC chamber and dried for 20 min at ambient temperature. For 2D-TLC analysis, the dried TLC sheet was rotated 90 degrees and placed into a TLC chamber pre-equilibrated with a mixed solvent of chloroform/methanol/water/acetic acid (70:25:4:1), developed for another 25 min, and dried for 20 min. The dried TLC sheet was sprayed with 0.02% primuline (Sigma-Aldrich) solution in 80:20 acetone/water, and then dried in air at ambient temperature for an hour. The fluorescent image was recorded with a Syngene G:BOX system. The silica gels at each representative fluorescent band were lifted with a metal spatula and suspended in 200 µL chloroform in an Agilent glass sample vial and stored at −20 °C. 400 µL methanol was added to the suspension right before MS analysis. After shaking by hand for 10 s followed by sedimentation of silica gel for 2 min, the clarified sample was injected into the mass spectrometer for analysis. MS scan, precursor scan, neutral loss scan, and MS/MS spectra were acquired to assign lipid composition in each TLC fluorescent band. After baseline subtraction, fluorescence intensities of lipid bands on thin-layer chromatograms were integrated using GelAnalyzer version 2010a.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.