The predictive accuracy of the scales was examined using the following measures: sensitivity (the proportion of people who repeated self-harm and were correctly identified by the scale as high risk), specificity (the proportion of people who did not repeat self-harm and were correctly identified by the scale as low risk), positive predictive value (the probability that the person identified as high risk went on to repeat self-harm), negative predictive value (the probability that the person identified as low risk did not repeat self-harm), positive likelihood ratio (the increased likelihood of a high risk scale result in a person who repeated self-harm vs. one who did not), negative likelihood ratio (the decreased likelihood of a low risk scale result in a person who repeated self-harm vs. one who did not) and diagnostic odds ratio (the odds of a high risk scale result in a person who repeated self-harm vs. one who did not). Receiver operator characteristic (ROC) curves, which show sensitivity on the y-axis and 1 minus specificity on the x-axis for all possible scale thresholds were plotted [24]. The area under the curve (AUC), based on the published cut-off points for each scale, was also calculated. The AUC represents the overall proportion of cases correctly predicted by the test; an AUC of 0.5 would suggest the test does not perform any better than chance while an AUC of 1.0 indicates every case is predicted correctly. Chi-square tests were used to examine differences in the AUC between subgroups. Stata V.13.1 and OpenEpi were used for the analyses.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.