We injected β−1,3-glucans to test whether the changes in the chemical profile of infected pupae may be caused by an immune stimulation (Vilcinskas and Wedde, 1997; Unestam and Söderhäll, 1977; Gunnarsson, 1988). Soluble β−1,3-glucans were acquired by suspending 5 mg of Zymosan-A (Saccharomyces cerevisiae cell wall fragments [Sigma-Aldrich]) in 1 ml of sterile physiological ant saline (as described in [Aubert and Richard, 2008]). The Zymosan suspension was vortexed for 1 hr at 3200 rpm before being centrifuged at 10000 rcf for 5 min. The supernatant that contains the soluble β-glucans (Vilcinskas and Wedde, 1997) was then removed and stored at 4°C until use. As a control we used sterile ant physiological saline (Aubert and Richard, 2008). Pupae were artificially unpacked from their cocoons (as above) and placed gently into a sponge harness. Using fine glass capillaries (with spike to aid injection; inner diameter = 25 µm [BioMedical Instruments, Germany]), a microinjector (parameters: pi = 120 hPa, ti = 0.3 s, pc = 20 hPa [FemtoJet, Eppendorf, Germany]) and a micromanipulator (Luigs and Neumann, Germany), we injected 46 nl of the β-glucan solution or ant physiological saline through the pupae’s first tergite, into their haemocoel. We cleaned the capillaries between injections using 96% ethanol. Half of the pupae were frozen at – 80°C immediately after injection whilst the remainder were kept alone in individual plaster dishes for a further 48 hr, before then also being frozen. Frozen pupae were then used for molecular and chemical analyses (below).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.