The morphology of the wood surfaces was observed through field emission scanning electron microscopy (SEM, Quanta 200, FEI, Holland) operating at 12.5 kV. The transmission electron microscopy (TEM) experiment was performed on a Tecnai G20 electron microscope (FEI, USA) with an acceleration voltage of 200 kV. Carbon-coated copper grids were used as the sample holders. X-ray diffraction (XRD, Bruker D8 Advance, Germany) was employed to analyze the crystal structures of all samples applying graphite monochromatic with Cu Kα radiation (λ = 1.5418 Å) in the 2θ range from 5° to 80°and a position-sensitive detector using a step size of 0.02° and a scan rate of 4° min−1. FTIR spectra were obtained on KBr tablets and recorded using a Magna-IR 560 spectrometer (Nicolet) with a resolution of 4 cm−1 by scanning the region between 4000 and 400 cm−1. Water contact angles (WCAs) and oil (hexadecane) contact angles (hereafter defined as OCAs) were measured on an OCA40 contact angle system (Dataphysics, Germany) at room temperature. In each measurement, a 5 μL droplet of deionized water was injected onto the surfaces of the wood samples and the contact angles were measured at five different points of each sample. The final values of the contact angles were obtained as an average of five measurements. Further evidence for the composition of the product was inferred from the X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI, USA), using an ESCALab MKII X-ray photoelectron spectrometer with Mg-Kα X-rays as the excitation source. The flat band potentials of the samples were evaluated with a standard electrochemical workstation (CHI660C) in the three-electrode configuration. The counter electrode was a Pt wire and the reference electrode was saturated calomel electrode (SCE). 1.0 M Na2SO4 solution buffered at pH 4.9 was used as the electrolyte. In the electrochemical impedance spectroscopy (EIS) measurement, the fixed frequency of the M-S plots was 103 Hz.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.