Measurement of mitochondrial and nuclear DNA damage was performed by the LORD-Q method as originally described [12]. For each analyzed genomic or mitochondrial gene locus a long DNA fragment (~3000 – 4000 bp) was used as sensor for DNA lesions and an internally nested short fragment (~50 – 70 bp) that was considered as undamaged served as reference. The nested intact reference was efficiently PCR-amplified, whereas amplification of the large sensor is inhibited by DNA lesions including abasic sites, thymine dimers, strand breaks and oxidative lesions [12]. Upon induction of DNA damage, the exponential amplification phase for the damage-sensitive large fragment is reached later as compared to the nested intact reference. The difference in crossing point values (Cp) therefore allows calculation of the average incidence of lesions per bp.
Initially, the replication efficiency of each primer pair was determined using a standard dilution of whole-cell DNA as described [12]. Then, real-time PCR was carried out in 96-well or 384-well plates with each well containing a reaction volume of 20 μL and 10 μL, respectively. The reaction mixture contained 2.5 ng/μL isolated sample DNA, 1 x KAPA2G HS Polymerase ReadyMix (Peqlab), 0.0016 x ResoLight dye (Roche, Basel, Switzerland) and 500 nM of HPLC-purified forward and reverse primers (Sigma-Aldrich), respectively.
Cycling conditions were as follows: a pre-incubation phase of 5 min at 95°C was followed by up to 60 cycles of 10 s at 95°C, 10 s at 60°C and 1 s at 72°C for small amplicons or 135 s for large amplicons, respectively. The reactions were carried out in a LightCycler 480 II system (Roche). Samples were measured in triplicates (96-well plates) or quadruplicates (384-well plates). Cp values were calculated using the LightCycler 480 software and replicates were averaged. All primers were designed to match the requirements of LORD-Q and are listed in Supplementary Table 1. For detection of nuclear DNA damage promoter sequences of the human and murine COL1A1 locus were analyzed. Data is depicted as mean ± standard deviation from at least three independent experiments.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.