Biochemical Assays

SR Satya Brata Routh
KP Komal Ishwar Pawar
SA Sadeem Ahmad
SS Swati Singh
KS Katta Suma
MK Mantu Kumar
SK Santosh Kumar Kuncha
KY Kranthikumar Yadav
SK Shobha P Kruparani
RS Rajan Sankaranarayanan
request Request a Protocol
ask Ask a question
Favorite

The assay conditions of EcDTD and PfDTD with various substrates have been described in [15]. A representative thin-layer chromatographic run is given in S8 Fig. E. coli tRNAGly was charged with glycine in a reaction mix containing 100 mM HEPES pH 7.2, 30 mM KCl, 10 mM MgCl2, 2 mM ATP, 50 mM glycine, 1 μM tRNAGly, and 2.2 μM T. thermophilus glycyl-tRNA synthetase (UniProt ID: P56206) incubated at 37°C for 15 min. E. coli L-Ala-tRNAAla was generated by the protocol given in [25]. DTD deacylation kinetics on Gly-tRNAGly was performed following the method described in [25] and [27].

EF-Tu activation was done by incubating 10 μM T. thermophilus EF-Tu in a solution containing 50 mM HEPES pH 7.2, 20 mM MgCl2, 250 mM NH4Cl, 5 mM DTT, 2 mM GTP, 3 mM phosphoenol pyruvate, and 50 μg ml-1 pyruvate kinase at 4°C for 3 h. Competition (deacylation) assays were performed in a solution of 100 mM HEPES pH 7.2 and 2.5 mM DTT containing 2 μM activated EF-Tu, 200 nM Gly-tRNAGly and varying concentrations of EcDTD.

3′-end modifications of E. coli tRNAGly were generated using in vitro-transcribed tRNAGly-CC lacking the terminal adenosine. Ten μM tRNAGly-CC was incubated with [α-32P]-2′-dATP, 2.6 μM CCA-adding enzyme (UniProt ID: P06961), 50 mM Tris pH 7.6, 20 mM MgCl2, 0.5 mM DTT, and 0.6 mM CTP at 37°C for 4 h to generate tRNAGly(2′-dA76). tRNAGly(2′-FdA76) was similarly produced using 400 μM 2′-FdATP (Jena Biosciences) instead of [α-32P]-2′-dATP; however, tRNAGly-CC used for making tRNAGly(2′-FdA76) was body-labeled by performing in vitro transcription with [α-32P]-UTP. Aminoacyltion of the 3′-end modified tRNAs with glycine was done using the conditions given for wild-type tRNA charging. Time-point–based deacylation assays with Gly-tRNAGly(2′-dA76) were performed using thin-layer chromatography–based method, whereas those with Gly-tRNAGly(2′-FdA76) were done using acid urea polyacrylamide gel electrophoresis [67]. Each point on the deacylation curves represents the mean of three independent readings; the error bars represent one standard deviation from the mean.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A