The dynamic colonization of PTS-394 on the tomato rhizoplane and its plant growth-promoting ability were investigated by pot experiments, and the GFP-labeled strain (PTS-394G) was used for colonization analysis. Suspensions of B. subtilis PTS-394 and PTS-394G with an OD600 = 1.0 were used. In both experiments, tomato seeds were surface-disinfected and sown into nursery soil containing a mixture of vermiculite and organic manure (1:1, w/w) for germination. Tomato seedlings at the 4-leaf stage were transplanted into pots filled with a mixture of vermiculite, rice field soil and organic manure (1:2:1, w/w). 20 mL of bacterial cell suspension was added to each plant and cultivation was continued in a greenhouse under natural conditions with temperatures ranging from 18 to 30 °C. Each treatment was performed on 30 plants and replicated three times in a completely randomized block design. In the colonization experiment, tomato root samples were collected from three PTS-394G plants at 0, 1, 2, 3, 5, 7, 9, 11, 14, and 21 days after transplantation and the amount of PTS-394 on the root surface was determined, as described previously. Meanwhile, tomato roots were examined at 1, 3, 7 and 14 days using fluorescent microscopy in order to detect colonization with PTS-394G. At 30 days after treatment with PTS-394, the fresh weight of the root and the plant height were measured in order to evaluate the growth-promoting effect of PTS-394.
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
 Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.