Antiviral Activity and Cell Toxicity Determination

KK Keun Bon Ku
HS Hye Jin Shin
HK Hae Soo Kim
BK Bum-Tae Kim
SK Seong-Jun Kim,
CK Chonsaeng Kim
ask Ask a question
Favorite

The evaluation of antiviral activity and cell toxicity was conducted on drugs that showed anti-SARS-CoV-2 potential in the antiviral screen described above. We seeded 2 × 104 Vero cells per well in 96-well plates one day before infection. Serially diluted drugs (100 μM to 0.16 μM) were added to the cells 1 hour prior to infection. The cells were infected with SARS-CoV-2 at an MOI of 2. At 24 h post-infection, cells were fixed with 4%paraformaldehyde and permeabilized with 0.1% Triton X-100 in phosphate-buffered saline. The cells were then stained with anti-dsRNA antibody and Alexa-Fluor 488-conjugated secondary antibody. Their nuclei were counterstained with Hoechst 33342 (Thermo Fisher Scientific, USA, catalog no. H3570). Image acquisition and analysis were performed as previously described [13]. Viral infection was quantified by dividing the number of cells stained with anti-dsRNA antibody by the total number of cells (obtained by counting the nuclei). Infection rate standards were obtained from mock infected cells (0%) and drug-free SARS-CoV-2 infected cells (100%). Infection rates in drug-treated cells were calculated based on these standards. Drug antiviral activity was determined from dose-response curves; half maximal inhibitory concentration (IC50) values were calculated using Prism v8 software (GraphPad Software). To determine the cell toxicity (CC50), similar experiments were performed without addition of the virus; cell viability was measured using MTS solution. CC50 values were calculated using Prism. The selectivity index (SI) was calculated as CC50/IC50.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A