Neuroimaging and reconstruction

VK Vanessa Kyriakopoulou
DV Deniz Vatansever
AD Alice Davidson
PP Prachi Patkee
SE Samia Elkommos
AC Andrew Chew
MM Miriam Martinez-Biarge
BH Bibbi Hagberg
MD Mellisa Damodaram
JA Joanna Allsop
MF Matt Fox
JH Joseph V. Hajnal
MR Mary A. Rutherford
request Request a Protocol
ask Ask a question
Favorite

Fetal MRI was performed using a 1.5 T MRI System (Philips Achieva; Philips Medical systems, Best, the Netherlands) with a 32-channel cardiac array coil placed around the mother’s abdomen. The mother was positioned in a left lateral tilt, no sedation was used, and the total duration of the MR examination did not exceed 60 min. Maternal temperature was measured using a tympanic thermometer prior to and after the scan. In instances, when the maternal temperature was ≥37.5 °C, the scan was rescheduled. A complete fetal brain clinical examination was performed in transverse, sagittal, and coronal planes. T2-weighted Single Shot Turbo Spin Echo (ssTSE) was acquired using the following scanning parameters: TR = 15,000 ms, TE = 160 ms, slice thickness of 2.5 mm, slice overlap of 1.5 mm, and flip angle = 90°. 3D reconstructed images were constructed using Snapshot MRI with Volume Reconstruction (SVR), as previously described (Jiang et al. 2007; Kuklisova-Murgasova et al. 2012). In summary, data sets from multiple ssTSE image stacks were acquired in three orthogonal planes using overlapping slices (four transverse, two coronal, and two sagittal acquisitions). The fetal brain was oversampled to ensure the acquisition of complete data sets even with significant motion. Post-acquisition processing and registration of raw images was performed on Windows and Linux workstations (total duration 40 min). All scans were reviewed for image quality, and the slices corrupted by motion artefacts and loss of anatomical detail were excluded from the proceeding analysis. Image registration is performed to align all images obtained based on the assumption of a rigid body, of constant shape and size, performing an unknown motion. Images were registered onto a self-consistent anatomical space of the fetal brain (volume with least motion), and using a scattered interpolation approach, all measured voxel intensities are used to reconstruct the 3D fetal brain with an accuracy of 0.3 mm. The reconstructed 3D volumetric data sets have high resolution, high signal-to-noise ratio, and full brain coverage essential for reliable volumetric analysis. Visual analysis of all acquired images was performed by an expert radiologist to exclude additional anomalies and confirm appropriate appearance for gestation. The 3D fetal volumetric brain data were orientated into standard axial, coronal, and sagittal projections, and the voxel size was interpolated from a reconstruction voxel size of 1.18 ×  1.18 ×  1.18 mm to 0.2  ×  0.2  ×  1 mm to aid visual display and assist placement of anatomical markers.

Do you have any questions about this protocol?

Post your question to gather feedback from the community. We will also invite the authors of this article to respond.

post Post a Question
0 Q&A