Preprocessing was conducted using SPM12 again separately for both samples but following the same protocol. In a first step, we discarded the first 10 volumes from each resting-state session due to known stabilization effects of the magnetic field. All remaining EPI volumes were realigned to the first volume and subsequently coregistered to the high-resolution T1-weighted images in native space. None of the scanned subjects showed excessive head motion (translation: >3 mm; rotation: >3°). We further tested whether diagnostic groups (HC vs. MCI) showed differences in head motion. To this end we computed the average frame-wise displacement for each individual following a previously described protocol (Power et al., 2014). When comparing the average frame-wise displacement across diagnostic groups using a two-sample t-test, we found no group differences between HC and MCI [ISD: t(54) = -0.790, p = 0.433; TUM: t(39) = -1.664, p = 0.104]. For spatial normalization to MNI space, the non-linear DARTEL and affine registration parameters that were estimated during preprocessing of the T1-weighted images were combined and applied to the coregistered EPI volumes. All EPI images were subsequently smoothed using an 8 mm FWHM Gaussian kernel, detrended and band-pass filtered, using a frequency band of 0.01–0.08 Hz. We further regressed out the 6 motion parameters (3 translations, 3 rotations) and the BOLD signal averaged across the WM and CSF masks that were created during preprocessing of the T1-weighted images. We did not apply global signal regression since it can artificially introduce anti-correlations in the BOLD signal (Murphy et al., 2009; Murphy and Fox, 2016).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.