Apart from the biological and behavioral parameters included in the model, CystiAgent utilizes a set of tuning parameters to adjust the probabilities of infection to match the observed prevalence of human and pig infection in each trial village. To do this, the model includes eight tuning parameters that represent different probabilities of exposure or infection for pigs or humans. Since these parameters represent complex sequences of unknown probabilities and cannot be determined through primary data collection or literature review, we adopted an approximate Bayesian computation (ABC) algorithm [40] to computationally derive their values for this analysis (this is described in detail below).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.