The phase structures of the curved and flat PZT ceramics were measured by X-ray diffraction (Rigaku SmartLab) with a scan speed of 4° per min. The microstructures of the surfaces of PZT ceramics were observed with scanning electron microscopy (SEM; FEI Quanta 450). Elemental mapping (EDS) was detected by an energy dispersive spectrometer (Oxford Instruments, INCA Energy 200). The sintered ceramics were carefully cut and polished in the form of a slice with a thickness of 1 mm for ferroelectric measurements and 0.4 mm for electro-strain behavior measurement. Silver electrodes were deposited onto the surface of cut specimens with magnetron sputtering (Q150TS). The ferroelectric hysteresis loop was tested with a ferroelectric analyzer (PK-CPE 1701, PolyK Technologies, USA). The strain-electric field curves were measured with a ferroelectric measurement system (RTI-LC II, Radiant Technologies Inc, USA) and a laser measurement system equipped with a strain gauge amplifier (MTI-2100, Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany). The tensile force-displacement curves were measured with a tensile tester system (TY8000-A, Tian Yuan Test Instrument). The density was measured by the Archimedes method. The quasi-static piezoelectric constants were measured with a quasi-static piezoelectric meter (YE2730A d33 meter). Temperature dependence of the relative dielectric constant and corresponding dielectric loss tanδ were detected by a high-temperature dielectric property test system (DPTS-AT-600, Wuhan Yanhe Technology Co., Ltd).
Do you have any questions about this protocol?
Post your question to gather feedback from the community. We will also invite the authors of this article to respond.
Tips for asking effective questions
+ Description
Write a detailed description. Include all information that will help others answer your question including experimental processes, conditions, and relevant images.